Cho tam giác ABC không vuông SBT Toán 10 Tập 1


Haylamdo biên soạn và sưu tầm lời giải Bài 6 trang 81 SBT Toán 10 Tập 1 trong Bài tập cuối chương 4. Với lời giải chi tiết nhất hy vọng sẽ giúp các bạn dễ dàng nắm được cách làm bài tập Sách bài tập Toán 10.

Giải sách bài tập Toán 10 Bài tập cuối chương 4

Bài 6 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC không vuông. Chứng minh rằng:

tanAtanB=c2+a2b2c2+b2a2.

Lời giải:

Theo định lí côsin ta có: a2 = b2 + c2 – 2bcosA

cosA = b2+c2a22bc

Tương tự: cosB = a2+c2b22ac

Theo định lí côsin ta có: asinA=bsinB=2R

sinA = a2R và sinB = b2R

Ta có:

tanAtanB=sinAcosA​.cosBsinB = a2R.2bcb2+c2a2.a2+c2b22ac.2Rb = c2+a2b2c2+b2a2 (ĐPCM).

Xem thêm lời giải Sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác: