Cho parabol (P) có phương trình là y^2 = 16x. Gọi Δ là đường thẳng bất kì
Cho parabol (P) có phương trình là y = 16x. Gọi Δ là đường thẳng bất kì đi qua tiêu điểm F của (P) và không trùng với trục hoành. Chứng minh rằng Δ luôn cắt (P) tại hai điểm phân biệt A, B, đồng thời tích các khoảng cách từ A và B đến trục hoành không đổi.
Sách bài tập Toán 10 Kết nối tri thức Bài 22: Ba đường conic
Bài 7.34 trang 46 Sách bài tập Toán lớp 10 Tập 2: Cho parabol (P) có phương trình là y2 = 16x. Gọi Δ là đường thẳng bất kì đi qua tiêu điểm F của (P) và không trùng với trục hoành. Chứng minh rằng Δ luôn cắt (P) tại hai điểm phân biệt A, B, đồng thời tích các khoảng cách từ A và B đến trục hoành không đổi.
Lời giải:
Gọi vectơ chỉ phương của Δ là . Vì Δ đi qua điểm F(4; 0) và Δ không trùng với trục Ox nên ta có b ≠ 0. Phương trình tham số của Δ là
Toạ độ giao điểm của Δ và (P) ứng với thoả mãn phương trình
(bt)2 =16 . (4 + at) ⇔ b2t2 – 16at – 64 = 0. (1)
Phương trình (1) có Δ’ = 64a2 + 64b2 > 0 (do b ≠ 0), suy ra phương trình (1) luôn có 2 nghiệm phân biệt. Vậy Δ luôn cắt (P) tại hai điểm phân biệt A, B.
Gọi A(4 + at1; bt1), B(4 + at2; bt2), trong đó t1, t2 là hai nghiệm của phương trình (1).
Ta có
Dựa vào phương trình (1). Theo định lí Vi–ét ta có: . Từ đó suy ra
Vậy tích các khoảng cách từ A và B đến trục hoành không đổi.