Cho sin α + cos α = 1/3 với - π/2 < α <0. Tính


Giải sách bài tập Toán 11 Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Bài 13 trang 11 SBT Toán 11 Tập 1: Cho sin α + cos α = 13 với π2<α<0 . Tính:

a) A = sinα . cos α;

b) B = sin α – cos α;

c) C = sin³ α + cos³ α;

d) D = sin4 α + cos4 α.

Lời giải:

a) Do sin α + cos α = 13 nên (sin α + cos α)2 = 132=19 .

Mà (sin α + cos α)2 = sin2 α + 2 sin α cos α + cos2 α = 1 + 2 sin α cos α.

Do đó, 1 + 2 sin α cos α = 19 , suy ra A = sinα . cos α = 1912=49 .

b) Ta có: B2 = (sin α – cos α)2 = 1 – 2 sin α cos α = 12.49=1+89=179 .

Do π2<α<0 nên sin α < 0 và cos α > 0. Do đó sin α – cos α < 0.

Vậy B = 173 .

c) Ta có:

C = sin³ α + cos³ α = (sin α + cos α)3 – 3 sin α cos α(sin α + cos α)

=1333.49.13=1327.

d) Ta có:

D = sin4 α + cos4 α = 1 – 2sin2 α cos2 α (theo Bài 9a)

= 1 – 2 (sin α cos α)2 = 12.492=4981 .

Lời giải Sách bài tập Toán lớp 11 Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác: