Cho hình lập phương ABCD A'B'C'D' cạnh a Gọi M N lần lượt là trung điểm của AC và B'C'
Cho hình lập phương cạnh a. Gọi M, N lần lượt là trung điểm của AC và . Tính khoảng cách giữa hai đường thẳng MN và .
Giải sách bài tập Toán 11 Bài 4: Khoảng cách trong không gian - Chân trời sáng tạo
Bài 3 trang 68 SBT Toán 11 Tập 2: Cho hình lập phương cạnh a. Gọi M, N lần lượt là trung điểm của AC và . Tính khoảng cách giữa hai đường thẳng MN và .
Lời giải:
B'D' A'C' tại O.
Gọi P là trung điểm của OC'.
Vě OH ⊥ MP, HE // NP, EF // OH.
ABCD là hình lập phương, ta dễ dàng có được: B'D' ⊥ (A'C'CA).
Hay B'D' ⊥ OH, mà OH // EF
EF ⊥ B'D' (1).
NP // B'D' NP ⊥ (A'C'CA) hay NP ⊥ OH.
Đồng thời OH ⊥ MP.
OH ⊥ (MNP) hay OH ⊥ MN EF ⊥ MN (2)
Từ (1) và (2) ta có: d(MN, B'D') = EF = OH.
Xét tam giác vuông MOP, ta có OM = a, OP = , suy ra OH = .
Vậy d(MN, B'D') = .
Lời giải SBT Toán 11 Bài 4: Khoảng cách trong không gian hay khác: