Cho hình chóp S ABCD có SA vuông góc với mặt phẳng ABCD và SA = a căn bậc hai 3


Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và SA = , đáy ABCD là hình thang vuông tại A và B có AB = a, AD = 3a, BC = a. Tính thể tích khối chóp S.BCD theo a.

Giải sách bài tập Toán 11 Bài 4: Khoảng cách trong không gian - Chân trời sáng tạo

Bài 6 trang 68 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và SA = , đáy ABCD là hình thang vuông tại A và B có AB = a, AD = 3a, BC = a. Tính thể tích khối chóp S.BCD theo a.

Lời giải:

Cho hình chóp S ABCD có SA vuông góc với mặt phẳng ABCD và SA = a căn bậc hai 3

Ta có: SABCD=12.AB.(AD+BC)=12.a.(3a+a)=2a2

Lại có: SABD=12.AB.AD=12.a.3a=3a22

Suy ra SBCD=SABCDSABD=a22 .

Vậy VS.BCD=13.SBCD.SA=13.a22.a3=a236 .

Lời giải SBT Toán 11 Bài 4: Khoảng cách trong không gian hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: