Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)


Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = (Hình 9).

Giải SBT Toán 12 Cánh diều Bài 1: Vectơ và các phép toán vectơ trong không gian

Bài 7 trang 61 SBT Toán 12 Tập 1: Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = 2 (Hình 9).

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

a) Tam giác ABC vuông tại A và tam giác SAB đều.

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

b) AB.AC = 0 và SA,AB = 120°.

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

c) SC.AB=a22.

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

d) cosSC,AB = 12.

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9)

Lời giải:

a) Đ

b) Đ

c) S

d) S

Nhận thấy: AB2 + AC2 = a2 + a2 = 2a2 = BC2.

Định lý Pythagore đảo ta có tam giác ABC vuông tại A.

Có SA = SB = AB nên tam giác SAB đều.

Vì tam giác ABC vuông tại A nên AB.AC = 0.

Ta có SA,AB = 180° − SAB^ = 120°.

Ta có: SC.AB=SA+AC.AB = SA.AB+AC.AB = SA.AB

      = |SA|.|AB|.cos120o = a22.

Suy ra cosSC,AB = Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC = acăn2 (Hình 9) = a22a2 = 12.

Lời giải SBT Toán 12 Bài 1: Vectơ và các phép toán vectơ trong không gian hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: