Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn vectơ AB = (1; 2; 3)


Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn = (1; 2; 3) và = (−1; 4; −2).

Giải SBT Toán 12 Chân trời sáng tạo Bài 3: Biểu thức toạ độ của các phép toán vectơ

Bài 3 trang 76 SBT Toán 12 Tập 1: Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn AB = (1; 2; 3) và AC = (−1; 4; −2).

Lời giải:

Gọi A(a; b; c).

Có G là trọng tâm nên GA+GB+GC+GO=0

GA+GA+AB+GA+AC+GA+AO=0

⇔ AB+AC+AO=4AG

Ta có: AB = (1; 2; 3), AC = (−1; 4; −2), AO = (−a; −b; −c),

AB+AC+AO = (−a; 6 – b; 1 – c).

          AG = (3 – a; −3 – b; 6 – c) ⇒ 4AG = (12 – 4a; −12 – 4b; 24 – 4c).

Do đó, a=124a6b=124a1c=244ca=4b=6c=233⇒ A4;6;233

Lời giải SBT Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: