Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn vectơ AB = (1; 2; 3)
Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn = (1; 2; 3) và = (−1; 4; −2).
Giải SBT Toán 12 Chân trời sáng tạo Bài 3: Biểu thức toạ độ của các phép toán vectơ
Bài 3 trang 76 SBT Toán 12 Tập 1: Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn = (1; 2; 3) và = (−1; 4; −2).
Lời giải:
Gọi A(a; b; c).
Có G là trọng tâm nên
⇔
⇔
Ta có: = (1; 2; 3), = (−1; 4; −2), = (−a; −b; −c),
⇒ = (−a; 6 – b; 1 – c).
= (3 – a; −3 – b; 6 – c) ⇒ = (12 – 4a; −12 – 4b; 24 – 4c).
Do đó, ⇒ A
Lời giải SBT Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ hay khác: