Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C')
Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C').
Giải SBT Toán 12 Chân trời sáng tạo Bài 1: Phương trình mặt phẳng
Bài 6 trang 46 SBT Toán 12 Tập 2: Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C').
Lời giải:
Chọn hệ tọa độ Oxyz sao cho gốc tọa độ O trùng với điểm D.
Khi đó, tọa độ các đỉnh của hình chữ nhật ABCD.A'B'C'D' lần lượt là D(0; 0; 0),
A(2; 0; 0), C(0; 3; 0), B(2; 3; 0), D'(0; 0; 2), A'(2; 0; 2), B'(2; 3; 2), C'(0; 3; 2).
Mặt phẳng (BA'C') có cặp vectơ chỉ phương là ,
Ta có: = (−6; −4; −6) = −2(3; 2; 3).
Do đó, = (3; 2; 3). Phương trình mặt phẳng (BA'C') là:
3(x – 2) + 2(y – 3) + 3z = 0 hay 3x + 2y + 3z – 12 = 0.
Khoảng cách từ đỉnh B' đến mặt phẳng (BA'C') là:
d(B', (BA'C')) =
Lời giải SBT Toán 12 Bài 1: Phương trình mặt phẳng hay khác: