Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm
Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm có thể được mô hình hóa bằng công thức
Giải sách bài tập Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn - Kết nối tri thức
Bài 1.48 trang 32 SBT Toán 12 Tập 1: Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm có thể được mô hình hóa bằng công thức
C = 800 + 0,04x + 0,0002x2.
Tìm mức sản xuất sao cho chi phí trung bình ˉC(x)=C(x)x cho mỗi đơn vị hàng hóa là nhỏ nhất.
Lời giải:
Ta có: ˉC(x)=C(x)x=800x+0,04+0,0002x
Suy ra, ¯C'(x)=−800x2+0,0002=0,0002x2−800x2
¯C'(x) = 0 ⇔ x = 2 000 (do x > 0).
Bảng biến thiên của hàm số:
Từ bảng biến thiên suy ta với mức sản xuất là 2 000 thì chi phí trung bình cho mỗi đơn vị hàng hóa là nhỏ nhất.
Lời giải Sách bài tập Toán lớp 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn hay khác: