Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm


Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm có thể được mô hình hóa bằng công thức

Giải sách bài tập Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn - Kết nối tri thức

Bài 1.48 trang 32 SBT Toán 12 Tập 1: Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm có thể được mô hình hóa bằng công thức

C = 800 + 0,04x + 0,0002x2.

Tìm mức sản xuất sao cho chi phí trung bình C¯(x)=C(x)x cho mỗi đơn vị hàng hóa là nhỏ nhất.

Lời giải:

Ta có: C¯(x)=C(x)x=800x+0,04+0,0002x

Suy ra, C'¯(x)=800x2+0,0002=0,0002x2800x2

            C'¯(x)  = 0 ⇔ x = 2 000 (do x > 0).

Bảng biến thiên của hàm số:

Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm

Từ bảng biến thiên suy ta với mức sản xuất là 2 000 thì chi phí trung bình cho mỗi đơn vị hàng hóa là nhỏ nhất.

Lời giải Sách bài tập Toán lớp 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: