X

Giải SBT Toán 7 Cánh diều

Tìm giá trị nhỏ nhất của mỗi biểu thức sau: A = |x − 1| + 21


Giải SBT Toán 7 Bài tập cuối chương 2

Haylamdo biên soạn và sưu tầm lời giải Bài 92 trang 67 Sách bài tập Toán 7 Tập 1 trong Bài tập cuối chương 2. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh dễ dàng nắm được cách làm bài tập SBT Toán lớp 7.

Bài 92 trang 67 sách bài tập Toán lớp 7 Tập 1: Tìm giá trị nhỏ nhất của mỗi biểu thức sau:

a) A = |x − 1| + 21;

b) B=x+x222 với x ≥ 0.

Lời giải:

a) Ta có: |x − 1| ≥ 0 với mọi số thực x.

Nên A = |x − 1| + 21 ≥ 21 với mọi số thực x.

Vậy giá trị nhỏ nhất của A là 21. Dấu "=" xảy ra khi và chỉ khi |x − 1| = 0.

Suy ra x – 1 = 0 hay x = 1.

b) Ta có: x0, x2 ≥ 0 với mọi số thực x.

Nên x+x20 với mọi số thực x.

Suy ra B=x+x22222 với mọi số thực x.

Vậy giá trị nhỏ nhất của B là –22.

Dấu "=" xảy ra khi và chỉ khi x=0 và x2 = 0. Suy ra x = 0.

Xem thêm lời giải Sách bài tập Toán lớp 7 sách Cánh diều hay, chi tiết khác: