Tìm giá trị lớn nhất của mỗi biểu thức sau: C = − |x| − x^2 + 23
Giải SBT Toán 7 Bài tập cuối chương 2
Haylamdo biên soạn và sưu tầm lời giải Bài 93 trang 67 Sách bài tập Toán 7 Tập 1 trong Bài tập cuối chương 2. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh dễ dàng nắm được cách làm bài tập SBT Toán lớp 7.
Bài 93 trang 67 sách bài tập Toán lớp 7 Tập 1: Tìm giá trị lớn nhất của mỗi biểu thức sau:
a) C = − |x| − x2 + 23;
b) .
Lời giải:
a) Ta có: |x| ≥ 0, x2 ≥ 0 với mọi số thực x.
Nên − |x| − x2 ≤ 0 với mọi số thực x.
Suy ra C = − |x| − x2 + 23 ≤ 23 với mọi số thực x.
Vậy giá trị lớn nhất của C là 23.
Dấu "=" xảy ra khi và chỉ khi |x| = 0 và x2 = 0. Suy ra x = 0.
b) .
Ta có: x2 ≥ 0 với mọi số thực x.
Nên hay với mọi số thực x.
Suy ra hay D ≤ 1 220 với mọi số thực x.
Vậy giá trị lớn nhất của D là 1 220. Dấu "=" xảy ra khi và chỉ khi x2 = 0. Suy ra x = 0.