Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H
Giải sách bài tập Toán lớp 7 Bài tập cuối chương 8
Bài 9 trang 66 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H. Chứng minh AH là đường trung trực của BC.
Lời giải:
Tam giác ABC có hai đường cao BE và CF cắt nhau tại H nên H là trực tâm của tam giác.
Do đó AH là đường cao ứng với cạnh BC.
Kéo dài AH cắt BC tại M.
Khi đó AH ⊥ BC tại M (1)
Vì tam giác ABC cân tại A (giả thiết) nên AB = AC.
Xét ΔBMA và ΔCMA có:
,
AM là cạnh chung,
AB = AC (chứng minh trên)
Do đó ΔBMA = ΔCMA (cạnh huyền – cạnh góc vuông).
Suy ra BM = CM (hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AH ⊥ BC tại trung điểm M của BC.
Do đó AH là đường trung trực của BC.
Vậy AH là đường trung trực của BC.