Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến
Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (A, B là các tiếp điểm) sao cho
Giải SBT Toán 9 Bài tập cuối chương 8 - Cánh diều
Bài 32 trang 93 SBT Toán 9 Tập 2: Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (A, B là các tiếp điểm) sao cho
a) Xác định tâm và bán kính đường tròn nội tiếp tam giác MAB.
b) Tính chu vi tam giác MAB.
c) Vẽ đường thẳng d đi qua M cắt đường tròn (O) tại hai điểm P, Q. Xác định vị trí của đường thẳng d sao cho MQ + MP đạt giá trị nhỏ nhất.
Lời giải:
a) ⦁ Ta có MA, MB là các tiếp tuyến của đường tròn (O) lần lượt tại A và B nên MA ⊥ OA, MB ⊥ OB.
Xét ∆OAM vuông tại A, theo định lí Pythagore, ta có:
Suy ra OM = 2R.
Gọi I là giao điểm của (O) với tia OM, ta có OI = R nên IM = OM – OI = 2R – R = R.
Do đó, IM = IO = R nên I là trung điểm của OM.
Do ∆OAM vuông tại A nên trung điểm I của cạnh huyền OM là tâm đường tròn ngoại tiếp ∆OAM.
Do ∆OBM vuông tại B nên trung điểm I của cạnh huyền OM là tâm đường tròn ngoại tiếp ∆OBM.
Do đó bốn điểm A, M, B, O cùng nằm trên đường tròn (I) đường kính OM.
Vậy I là tâm đường tròn ngoại tiếp tam giác AMB. (1)
⦁ Xét ∆OAM vuông tại A, ta có:
Suy ra
Do MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M nên MA = MB và MO là tia phân giác của góc AMB, suy ra
Vì vậy tam giác AMB là tam giác đều có (2)
Từ (1), (2) suy ra đường tròn nội tiếp tam giác đều MAB cạnh có tâm là I và bán kính là
b) Do tam giác MAB đều cạnh nên chu vi tam giác MAB bằng
c) Ta có suy ra (3)
Do ∆OBP cân tại O (do OB = OP) nên ta có:
Xét đường tròn (O) có lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BP nên
Do đó Hay (4)
Từ (3) và (4) suy ra
Xét ∆MPB và ∆MBQ có:
là góc chung
Do đó ∆MPB ᔕ ∆MBQ (g.g).
Suy ra hay
Lại có (MQ – MP)2 ≥ 0 hay (MQ + MP)2 ≥ 4MQ.MP
Suy ra (MQ + MP)2 ≥ 4.3R2 = 12R2
Do đó (dấu “=” xảy ra khi MQ = MP).
Vậy MQ + MP đạt giá trị nhỏ nhất bằng khi đó MP = MQ hay đường thẳng d đi qua M và A hoặc d đi qua M và B.
Lời giải SBT Toán 9 Bài tập cuối chương 8 hay khác: