Cho đường tròn (I; r) cố định. Một tam giác ABC thay đổi, có chu vi bằng 16 cm
Cho đường tròn (I; r) cố định. Một tam giác ABC thay đổi, có chu vi bằng 16 cm và luôn ngoại tiếp đường tròn (I; r). Một tiếp tuyến song song với BC cắt các cạnh AB, AC lần lượt tại M và N. Tìm độ dài BC để MN có độ dài lớn nhất.
Giải SBT Toán 9 Bài tập cuối chương 8 - Cánh diều
Bài 33* trang 93 SBT Toán 9 Tập 2: Cho đường tròn (I; r) cố định. Một tam giác ABC thay đổi, có chu vi bằng 16 cm và luôn ngoại tiếp đường tròn (I; r). Một tiếp tuyến song song với BC cắt các cạnh AB, AC lần lượt tại M và N. Tìm độ dài BC để MN có độ dài lớn nhất.
Lời giải:
Giả sử đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại D, F, E và BC = x.
Ta có MN // BC nên ∆AMN ᔕ ∆ABC.
Suy ra:
Theo tính chất dãy tỉ số bằng nhau, ta có:
(*)
Vì AD, AE là các tiếp tuyến của đường tròn (I; r) tại D, E nên AD = AE.
Tương tự, ta có BD = BF và CE = CF.
Do đó AD + AE = AB – BD + AC – CE
= AB + AC – (BD + CE)
= AB + AC – (BF + CF)
= AB + AC – BC.
Gọi H là tiếp điểm của đường tròn (I; r) với MN.
Hai tiếp tuyến MD, MH của đường tròn (I; r) cắt nhau tại M nên MD = MH.
Tương tự ta có NE = NH.
Ta có:
Chu vi ∆AMN
= AM + AN + MN
= AD – MD + AE – NE + MN
= AD + AE – (MD + NE) + MN
= AD + AE – (MH + NH) + MN
= AD + AE – MN + MN
= AD + AE
= AB + AC – BC
= AB + AC + BC – 2BC
= Chu vi ∆ABC – 2x (với x = BC)
= 16 – 2x.
Từ (*) ta có: hay
Từ đó
Do đó, MN có độ dài lớn nhất bằng 2 cm khi x = 8 – x hay x = 4, tức là BC = 4 cm.
Lời giải SBT Toán 9 Bài tập cuối chương 8 hay khác: