Bài 3 trang 92 Toán 10 Tập 1 Cánh diều


Cho tam giác ABC có M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh:

Giải Toán lớp 10 Bài 5: Tích của một số với một vectơ

Bài 3 trang 92 Toán lớp 10 Tập 1: Cho tam giác ABC có M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh:

a) AP+12BC=AN;

b) BC+2MP=BA.

Lời giải:

Bài 3 trang 92 Toán 10 Tập 1 Cánh diều

a) Vì P và N lần lượt là trung điểm của AB và AC nên PN là đường trung bình của tam giác ABC.

Do đó: PN // = 12BC.

Khi đó hai vectơ PN và BC cùng hướng và PN = 12BC.

Suy ra: PN=12BC.

Do đó:  AP+12BC=AP+PN=AN.

Vậy AP+12BC=AN.

b) M và P lần lượt là trung điểm của BC và AB nên MP là đường trung bình của tam giác ABC.

Do đó: MP // AC VÀ MP = 12 AC.

Lại có hai vectơ MP và CA cùng hướng và MP = 12CA nên MP=12CA hay CA=2MP.

Khi đó ta có: BC+2MP=BC+CA=BA.

Vậy BC+2MP=BA.

Lời giải bài tập Toán 10 Bài 5: Tích của một số với một vectơ hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: