Bài 8 trang 38 Toán 10 Tập 1 Cánh diều


Một lớp muốn thuê một chiếc xe khách cho chuyến tham quan với tổng đoạn đường cần di chuyển trong khoảng từ 550 km đến 600 km, có hai công ty được tiếp cận để tham khảo giá.

Giải Toán lớp 10 Bài 1: Hàm số và đồ thị

Bài 8 trang 38 Toán lớp 10 Tập 1: Một lớp muốn thuê một chiếc xe khách cho chuyến tham quan với tổng đoạn đường cần di chuyển trong khoảng từ 550 km đến 600 km, có hai công ty được tiếp cận để tham khảo giá.

Công ty A có giá khởi đầu là 3,75 triệu đồng cộng thêm 5 000 đồng cho mỗi ki-lô-mét chạy xe. 

Công ty B có giá khởi đầu là 2,5 triệu đồng cộng thêm 7 500 đồng cho mỗi ki-lô-mét chạy xe. Lớp đó nên chọn công ty nào để chi phí là thấp nhất? 

Lời giải:

Ta có: 3,75 triệu đồng = 3 750 000 đồng; 2,5 triệu đồng = 2 500 000 đồng. 

Gọi x (km) là tổng đoạn đường cần di chuyển của lớp. 

Theo bài ra ta có: 550 ≤ x ≤ 600. 

Giả sử y (đồng) là số tiền phải trả để thuê xe. 

Khi đó đối với từng xe của mỗi công ty, ứng với mỗi giá trị của x có đúng một giá trị của y nên y là hàm số của x. 

Đối với công ty A, ta có số tiền cần trả được biểu diễn theo hàm số:  

yA = 3 750 000 + 5000x 

Đối với công ty B, ta có số tiền cần trả được biểu diễn theo hàm số:  

yB = 2 500 000 + 7500x 

Ta cần so sánh yvà yB với điều kiện của x là 550 ≤ x ≤ 600 để chọn ra công ty có chi phí thấp nhất. 

Ta có: yA = 3 750 000 + 5000x = (2 500 000 + 5000x) + 1 250 000

yB = 2 500 000 + 7500x = (2 500 000 + 5000x) + 2500x

Do 550 ≤ x ≤ 600 ⇔ 550 . 2500 ≤ 2500x ≤ 600 . 2500 

⇔ 1 375 000 ≤ 2500x ≤ 1 500 000

Mà 1 250 000 < 1 375 000

Do đó (2 500 000 + 5000x) + 1 250 000 < (2 500 000 + 5000x) + 2500x 

Hay yA < yB với 550 ≤ x ≤ 600. 

Vậy để chi phí là thấp nhất thì lớp đó nên chọn xe của công ty A. 

Lời giải bài tập Toán 10 Bài 1: Hàm số và đồ thị hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: