Cho A = {x thuộc ℝ| x + 2 lớn hơn bằng 0}, B = {x thuộc ℝ| 5 – x lớn hơn bằng 0}.
Câu hỏi:
Cho A = {x ∈ ℝ| x + 2 ≥ 0}, B = {x ∈ ℝ| 5 – x ≥ 0}. Số các số nguyên thuộc cả hai tập A và B là:
A. 6
B. 8
C. 5
D. 3
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có A = {x ∈ ℝ| x + 2 ≥ 0} = {x ∈ ℝ| x ≥ – 2} = [– 2; + ∞).
B = {x ∈ ℝ| 5 – x ≥ 0} = {x ∈ ℝ| x ≤ 5} = (– ∞; 5].
Suy ra A ∩ B = [– 2; + ∞) ∩ (– ∞; 5] = [– 2; 5].
Các số nguyên thuộc cả hai tập A và B chính là các số nguyên thuộc tập A ∩ B, đó là các số: – 2; – 1; 0; 1; 2; 3; 4; 5.
Vậy có 8 số nguyên thuộc cả hai tập A và B.