Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m thuộc ℝ. Xác định m để


Câu hỏi:

Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m . Xác định m để F E.

A. m [– 2; 1);
B. m (– 2; 1];
C. m [– 2; 1];
D. m (– 2; 1);

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

ĐKXĐ các tập E và F: \[\left\{ \begin{array}{l}m - 1 < 4\\2m + 2 > - 2\,\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 5\\m > - 2\,\end{array} \right. \Leftrightarrow - 2 < m < 5\].

Ta có: F E (tập F là tập con của tập E)\[ \Leftrightarrow \left\{ \begin{array}{l}m - 1 \le - 2\\4 \ge 2m + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\m \le 1\end{array} \right. \Leftrightarrow m \le - 1\].

Kết hợp với điều kiện ta được – 2 < m ≤ – 1.

Vậy m (– 2; 1].


Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Cho tập hợp C = {x ℝ| 8 < |– 3x + 5|}. Hãy viết lại các tập hợp C dưới dạng khoảng, nửa khoảng, đoạn.

Xem lời giải »


Câu 2:

Cho tập hợp \({C_\mathbb{R}}A = \left[ {0;6} \right)\), \({C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right).\) Tập \({C_\mathbb{R}}\left( {A \cap B} \right)\)là:

Xem lời giải »


Câu 3:

Một lớp học có 23 học sinh giỏi môn Toán, 22 học sinh giỏi môn Lý, 15 học sinh

giỏi cả môn Toán và Lý và có 5 học sinh không giỏi môn nào cả. Hỏi lớp đó có bao nhiêu học sinh?

Xem lời giải »


Câu 4:

Cho A = {x ℝ| x + 2 ≥ 0}, B = {x ℝ| 5 – x ≥ 0}. Số các số nguyên thuộc cả hai tập AB là:

Xem lời giải »