Cho tập hợp \({C_\mathbb{R}}A = \left[ {0;6} \right)\), \({C_\mathbb{R}}


Câu hỏi:

Cho tập hợp \({C_\mathbb{R}}A = \left[ {0;6} \right)\), \({C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right).\) Tập \({C_\mathbb{R}}\left( {A \cap B} \right)\)là:

A. \[\left[ { - \frac{{12}}{3};\sqrt {55} } \right]\]; 

B. \[\emptyset \];
C. \[\left( { - \frac{{12}}{3};\sqrt {55} } \right)\];           

D. \(\left( { - \frac{{12}}{3};0} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right)\).

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Ta có:\[{C_\mathbb{R}}A = \left[ {0;6} \right) = \mathbb{R}\backslash A\], suy ra \[A = \left( { - \infty ;\,0} \right) \cup \left[ {6; + \infty } \right)\].

Lại có:\[{C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right) = \left( { - \frac{{12}}{3};\,\sqrt {55} } \right) = \mathbb{R}\backslash B\]

(do \(\sqrt {17} = 4,123...\); \(\sqrt {55} = 7,416....\)).

Suy ra \[B = \left( { - \infty ; - \frac{{12}}{3}} \right] \cup \left[ {\sqrt {55} ; + \infty } \right).\]

Do đó, \[A \cap B = \left( { - \infty ; - \frac{{12}}{3}} \right] \cup \left[ {\sqrt {55} ; + \infty } \right)\]

\[ \Rightarrow {C_\mathbb{R}}\left( {A \cap B} \right) = \mathbb{R}\backslash \left( {A \cap B} \right) = \left( { - \frac{{12}}{3};\sqrt {55} } \right).\]

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Cho tập hợp C = {x ℝ| 8 < |– 3x + 5|}. Hãy viết lại các tập hợp C dưới dạng khoảng, nửa khoảng, đoạn.

Xem lời giải »


Câu 2:

Một lớp học có 23 học sinh giỏi môn Toán, 22 học sinh giỏi môn Lý, 15 học sinh

giỏi cả môn Toán và Lý và có 5 học sinh không giỏi môn nào cả. Hỏi lớp đó có bao nhiêu học sinh?

Xem lời giải »


Câu 3:

Cho A = {x ℝ| x + 2 ≥ 0}, B = {x ℝ| 5 – x ≥ 0}. Số các số nguyên thuộc cả hai tập AB là:

Xem lời giải »


Câu 4:

Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m . Xác định m để F E.

Xem lời giải »