Tìm tham số m để bất phương trình: f(x) = (m^2 + 1)x^2 + (2m – 1)x – 5 < 0 có nghiệm đúng với mọi x thuộc


Câu hỏi:

Tìm tham số m để bất phương trình: f(x) = (m2 + 1)x2 + (2m – 1)x – 5 < 0 có nghiệm đúng với mọi x thuộc khoảng (−1; 1).

A. m  1;6;
B. m  1;6;
C. m  1;61;
D. m  1;61.

Trả lời:

Đáp án đúng là: C

Ta có:

f(1)0f(1)0m22m30m2+2m50

1m36m61 −1 ≤ m ≤ 61.

Vậy để bất phương trình có nghiệm đúng với mọi x thuộc khoảng (−1; 1) thì m 1;61.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Tập nghiệm của bất phương trình x12x+3(x+1)(x2)(x3)>0 là:

Xem lời giải »


Câu 2:

Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi

Xem lời giải »


Câu 3:

Tìm m để bất phương trình sau (m + 2)2 – 2mx + m2 + 2m ≤ 0 có nghiệm.

Xem lời giải »


Câu 4:

Bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi

Xem lời giải »