Tính giá trị biểu thức sau: A = 6!/m ( m + 1). ( m + 1)! / 4!.( m - 1 )! với m ∈ ℕ, m > 1. A. 60; B. 40; C. 30; D. 20.
Câu hỏi:
Tính giá trị biểu thức sau: \(A = \frac{{6!}}{{m\left( {m + 1} \right)}}.\frac{{\left( {m + 1} \right)!}}{{4!.\left( {m - 1} \right)!}}\) với m ∈ ℕ, m > 1.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
\(A = \frac{{6!}}{{m\left( {m + 1} \right)}}.\frac{{\left( {m + 1} \right)!}}{{4!.\left( {m - 1} \right)!}}\)
\( \Leftrightarrow A = \frac{{6.5.4!}}{{m\left( {m + 1} \right)}}.\frac{{\left( {m + 1} \right).m.\left( {m - 1} \right)!}}{{4!.\left( {m - 1} \right)!}}\)
\( \Leftrightarrow A = \frac{{6.5.4!.\left( {m + 1} \right).m.\left( {m - 1} \right)!}}{{m\left( {m + 1} \right).4!.\left( {m - 1} \right)!}}\)
\( \Leftrightarrow \)A = 6 . 5 = 30.