Trên giá sách có 4 quyển sách toán, 3 quyển sách lí, 2 quyển sách hoá. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển lấy ra có ít nhất 1 quyển sách toán. A. \(\frac{2}{7}\); B. \(\f


Câu hỏi:

Trên giá sách có 4 quyển sách toán, 3 quyển sách lí, 2 quyển sách hoá. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển lấy ra có ít nhất 1 quyển sách toán.

A. \(\frac{2}{7}\);
B. \(\frac{1}{{21}}\);

C. \(\frac{{37}}{{42}}\);

D. \(\frac{5}{{42}}\).

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Ta có : Mỗi lần chọn 3 quyển sách bất kì từ 9 quyển sách cho ta một tổ hợp chập 3 của 9 nên n(Ω) =\(C_9^3\)= 84

Gọi C là biến cố: “ 3 quyển sách lấy ra có ít nhất một quyển là môn toán”

Gọi \[\overline C \] là biến cố: “ 3 quyển sách lấy ra không có quyển nào môn toán”

Mỗi lần chọn 3 viên bi bất kì từ 5 quyển sách lí và hoá cho ta một tổ hợp chập 3 của 5 nên n(\[\overline C \]) = \(C_5^3\)= 10 P(\[\overline C \]) = \(\frac{{n(\overline C )}}{{n(\Omega )}}\)= \(\frac{{10}}{{84}} = \frac{5}{{42}}\)

Vậy P(C) = 1 – P(\[\overline C \]) = \(1 - \frac{5}{{42}} = \frac{{37}}{{42}}\).

Xem thêm bài tập Toán 10 Cánh diều có lời giải hay khác:

Câu 1:

Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

Xem lời giải »


Câu 2:

Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?

Xem lời giải »


Câu 3:

Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Tính số phần tử của biến cố A :” 4 viên bi lấy ra có ít nhất một viên bi màu đỏ”

Xem lời giải »


Câu 4:

Từ các chữ số 1; 2; 4; 6; 8; 9 lấy ngẫu nhiễn một số. Xác suất để lấy được một số nguyên tố là:

Xem lời giải »


Câu 5:

Một nhóm gồm 8 nam và 7 nữ. Chọn ngẫu nhiên 5 bạn. Xác suất để 5 bạn được cả nam lẫn nữ mà nam nhiều hơn nữ là:

Xem lời giải »


Câu 6:

Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau

Xem lời giải »


Câu 7:

Bốn quyển sách được đánh dấu bằng những chữ cái U, V, X, Y được xếp tuỳ ý trên 1 kệ sách dài. Xác suất để chúng được sắp xếp theo thứ tự bảng chữ cái là:

Xem lời giải »


Câu 8:

Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ 3 có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa. Tính xác suất để trong 7 hoa được chọn có số hoa hồng bằng hoa ly.

Xem lời giải »