Trong các phương trình dưới đây là phương trình elip? A. ( E ): x^2/25 + y^2/144 = 1; B. ( F ): x^2/25 - y^2/4 = 1; C. ( G ): y^2/4= x; D. ( H ):4x^2 + 25y^2 = 1
Câu hỏi:
Trong các phương trình dưới đây là phương trình elip?
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét phương trình \[\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{144}} = 1 \Leftrightarrow \frac{{{x^2}}}{{{5^2}}} + \frac{{{y^2}}}{{{{12}^2}}} = 1\] có dạng phương trình phương trình elip với a = 5, b = 12 nhưng không thỏa mãn a > b. Do đó (E) không là elip.
Xét phương trình \[\left( F \right):\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{4} = 1\] không có dạng của phương trình elip.
Xét phương trình \[\left( G \right):\frac{{{y^2}}}{4} = x\]không có dạng của phương trình elip.
Xét phương trình \[\left( H \right):4{x^2} + 25{y^2} = 1 \Leftrightarrow \frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{25}}}} = 1 \Leftrightarrow \frac{{{x^2}}}{{{{\left( {\frac{1}{2}} \right)}^2}}} + \frac{{{y^2}}}{{{{\left( {\frac{1}{5}} \right)}^2}}} = 1\] có dạng của phương trình elip với a = \(\frac{1}{4}\), b = \(\frac{1}{5}\) thỏa mãn \(\frac{1}{4} > \frac{1}{5} > 0\). Do đó D đúng.