X

Toán lớp 10 Chân trời sáng tạo

∆ABC vuông cân tại A và nội tiếp đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp ∆ABC. Khi đó tỉ số R/r bằng: A. 1 + căn bậc hai của 2; B. 2 + căn bậc hai của 2/2; C. c


Câu hỏi:

∆ABC vuông cân tại A và nội tiếp đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp ∆ABC. Khi đó tỉ số Rr bằng:

A. 1+2;
B. 2+22;
C. 212;
D. 1+22.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Giả sử AB = AC = a.

∆ABC vuông cân tại A nên BC2 = AB2 + AC2 (Định lí Pythagore)

Do đó BC2 = a2 + a2 = 2a2.

Suy ra BC=a2.

Diện tích ∆ABC là: S=12.AB.AC=a22 (đơn vị diện tích)

Ta có S=AB.AC.BC4R

R=AB.AC.BC4S=a.a.a24.a22=a22.

Nửa chu vi của ∆ABC là:

p=AB+AC+BC2=a+a+a22=a(2+2)2.

Ta có S = p.r

r=Sp=a22:a(2+2)2=a22.2a(2+2)=a2+2.

Vì vậy tỉ số Rr=a22:a2+2=a22.2+2a=1+2.

Vậy ta chọn phương án A.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho ∆ABC. Nếu tăng cạnh AB lên 4 lần và tăng cạnh AC lên 5 lần và giữ nguyên độ lớn của ˆA thì khi đó diện tích của tam giác mới S’ được tạo nên bằng:

Xem lời giải »


Câu 2:

∆ABC có AB=622, BC=3, CA=2. Gọi D là chân đường phân giác trong của ˆA. Khi đó số đo của ^ADB bằng:

Xem lời giải »


Câu 3:

Cho ∆ABC và các khẳng định sau:

(I) b2 – c2 = a(b.cosC – c.cosB);

(II) (b + c)sinA = a(sinB + sinC);

(III) ha = 2R.sinB.sinC;

(IV) S = R.r.(sinA + sinB + sin C);

Số khẳng định đúng là:

Xem lời giải »


Câu 4:

Hai tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 120°. Tàu 1 chạy với vận tốc 30 hải lí/giờ. Tàu 2 chạy với vận tốc 25 hải lí/giờ. Sau hai giờ, hai tàu cách nhau khoảng:

Xem lời giải »