X

Toán lớp 10 Chân trời sáng tạo

Cho ∆ABC và các khẳng định sau: (I) b^2 – c^2 = a(b.cosC – c.cosB); (II) (b + c)sinA = a(sinB + sinC); (III) ha = 2R.sinB.sinC; (IV) S = R.r.(sinA + sinB + sin C); Số khẳng định đúng là:


Câu hỏi:

Cho ∆ABC và các khẳng định sau:

(I) b2 – c2 = a(b.cosC – c.cosB);

(II) (b + c)sinA = a(sinB + sinC);

(III) ha = 2R.sinB.sinC;

(IV) S = R.r.(sinA + sinB + sin C);

Số khẳng định đúng là:

A. 1;

B. 2;

C. 3;
D. 4.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Ta xét khẳng định (I):

Áp dụng định lí côsin cho ∆ABC ta có:

b2 – c2 = c2 + a2 – 2ca.cosB – (a2 + b2 – 2ab.cosC)

= c2 + a2 – 2ca.cosB – a2 – b2 + 2ab.cosC

= c2 – b2 + 2a(b.cosC – c.cosB)

Þ b2 – c2 = c2 – b2 + 2a(b.cosC – c.cosB)

Þ 2(b2 – c2) = 2a(b.cosC – c.cosB)

Þ b2 – c2 = a(b.cosC – c.cosB).

Do đó khẳng định (I) đúng.

Ta xét khẳng định (II):

Áp dụng hệ quả định lí sin cho ∆ABC ta có:

(b + c)sinA = \[\left( {2R.\sin B + 2R.\sin C} \right).\frac{a}{{2R}}\]

\[ = \left( {\sin B + \sin C} \right).\frac{{2R.a}}{{2R}}\]

= a(sinB + sinC).

Vì vậy khẳng định (II) đúng.

Ta xét khẳng định (III):

Áp dụng hệ quả định lí sin cho ∆ABC ta có:

2R.sinB.sinC = \(2R.\frac{b}{{2R}}.\frac{c}{{2R}}\)

\( = \frac{{bc}}{{2R}} = \frac{{abc}}{{4R}}.\frac{2}{a}\)

\( = \frac{{2S}}{a} = {h_a}\).

Vì vậy khẳng định (III) đúng.

Ta xét khẳng định (IV):

Áp dụng hệ quả định lí sin cho ∆ABC ta có:

R.r.(sinA + sinB + sin C) = \(R.r.\left( {\frac{a}{{2R}} + \frac{b}{{2R}} + \frac{c}{{2R}}} \right)\)

\[ = R.r.\frac{1}{R}\left( {\frac{a}{2} + \frac{b}{2} + \frac{c}{2}} \right)\]

\[ = r.\frac{{a + b + c}}{2} = r.p = S\].

Vì vậy khẳng định (IV) đúng.

Vậy có 4 khẳng định đúng, ta chọn phương án D.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho ∆ABC. Nếu tăng cạnh AB lên 4 lần và tăng cạnh AC lên 5 lần và giữ nguyên độ lớn của \(\widehat A\) thì khi đó diện tích của tam giác mới S’ được tạo nên bằng:

Xem lời giải »


Câu 2:

∆ABC vuông cân tại A và nội tiếp đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp ∆ABC. Khi đó tỉ số \(\frac{R}{r}\) bằng:

Xem lời giải »


Câu 3:

∆ABC có \(AB = \frac{{\sqrt 6 - \sqrt 2 }}{2}\), \(BC = \sqrt 3 \), \(CA = \sqrt 2 \). Gọi D là chân đường phân giác trong của \(\widehat A\). Khi đó số đo của \(\widehat {ADB}\) bằng:

Xem lời giải »


Câu 4:

Hai tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 120°. Tàu 1 chạy với vận tốc 30 hải lí/giờ. Tàu 2 chạy với vận tốc 25 hải lí/giờ. Sau hai giờ, hai tàu cách nhau khoảng:

Xem lời giải »