Cho ∆ABC. Khẳng định nào sau đây đúng nhất? A. sin A + B/2 = cos C/2; B. tan A + B - C/2 = cot C; C. cos(A + B) = –cosC; D. Cả A, B, C đều đúng.
Câu hỏi:
Trả lời:
Hướng dẫn giải
Đáp án đúng là:
∆ABC có: A + B + C = 180° (định lí tổng ba góc trong một tam giác)
⦁ Ta có \(\sin \frac{{A + B}}{2} = \sin \frac{{180^\circ - C}}{2}\)
\( = \sin \left( {\frac{{180^\circ }}{2} - \frac{C}{2}} \right)\)
\( = \sin \left( {90^\circ - \frac{C}{2}} \right)\)
\( = \cos \frac{C}{2}.\)
Do đó phương án A đúng.
⦁ Ta có \(\tan \frac{{A + B - C}}{2} = \tan \frac{{180^\circ - C - C}}{2}\)
\( = \tan \frac{{180^\circ - 2C}}{2}\)
\( = \tan \left( {\frac{{180^\circ }}{2} - \frac{{2C}}{2}} \right)\)
= tan(90° – C)
= cotC.
Do đó phương án B đúng.
⦁ Ta có cos(A + B) = cos(180° – C)
= –cosC.
Do đó phương án C đúng.
Vậy ta chọn phương án D.