X

Toán lớp 10 Chân trời sáng tạo

Cho bất phương trình mx^2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các


Câu hỏi:

Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.

A. \[m \ge \frac{1}{8}\];

B. \[m > \frac{1}{8}\];

C. \[m < \frac{1}{8}\];

D. \[m \le \frac{1}{8}\].

Trả lời:

Đáp án đúng là: A

Đặt f(x) = mx2 – (2m – 1)x + m + 1.

Ta có f(x) < 0 vô nghiệm \( \Leftrightarrow f\left( x \right) \ge 0\,\,\forall x \in \mathbb{R}\) \( \Leftrightarrow \) f(x) ≥ 0 với mọi x \( \in \)

Xét m = 0 khi đó f(x) = x + 1 nên m = 0 không thoả mãn.

Xét m ≠ 0\( \Leftrightarrow \) f(x) ≥ 0 với mọi x \( \in \)\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta = - 8m + 1 \le 0\end{array} \right.\)\( \Leftrightarrow m \ge \frac{1}{8}\).

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Tập nghiệm của bất phương trình x2 + 4x + 4 > 0 là:

Xem lời giải »


Câu 2:

Tập nghiệm của bất phương trình x2 – 1 > 0 là:

Xem lời giải »


Câu 3:

Tập nghiệm của bất phương trình x2 – x – 6 ≤ 0 là:

Xem lời giải »


Câu 4:

Tập ngiệm của bất phương trình x(x + 5) ≤ 2(x2 + 2) là

Xem lời giải »