Tập ngiệm của bất phương trình x(x + 5) < = 2(x^2 + 2) là A> )- vô cùng; 1)
Câu hỏi:
Tập ngiệm của bất phương trình x(x + 5) ≤ 2(x2 + 2) là
A. (– ∞; 1]\( \cup \)[4; + ∞)
B. [1; 4];
C. (– ∞; 1)\( \cup \)(4; + ∞);
D. (1; 4).
Trả lời:
Đáp án đúng là: A
Ta có: x(x + 5) ≤ 2(x2 + 2) \( \Leftrightarrow \) x2 – 5x + 4 ≥ 0.
Xét tam thức f(x) = x2 – 5x + 4 có ∆ = 9 > 0, hai nghiệm phân biệt là x = 1; x = 4 và a = 1 > 0.
Ta có bảng xét dấu :
x |
- ∞ 1 4 + ∞ |
f(x) |
+ 0 – 0 + |
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là (– ∞; 1]\( \cup \)[4; + ∞).