Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?
Câu hỏi:
Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?
A. (d) có hệ số góc ;
B. (d) cắt (d’): x – 2y = 0;
C. (d) đi qua A(1; –2);
D. (d) có phương trình tham số: .
Trả lời:
Đáp án đúng là: A
• (d): x – 2y + 5 = 0 ⇔ 2y = x + 5 ⇔
Do đó (d) có hệ số góc k=1/2
Vì vậy phương án A đúng.
• (d) và (d’) có vectơ pháp tuyến lần lượt là và
Ta có
Do đó (d) và (d’) song song hoặc trùng nhau.
Vì vậy phương án B sai.
• Thay tọa độ A(1; –2) vào phương trình (d), ta được:
1 – 2.(–2) + 5 = 10 ≠ 0.
Suy ra A(1; –2) không thuộc (d) hay (d) không đi qua A(1; –2).
Do đó phương án C sai.
• (d) có vectơ pháp tuyến
Suy ra (d) có vectơ chỉ phương
Ở phương án D, ta có vectơ chỉ phương
Ta có: 2.(–2) – 1.1 = –5 ≠ 0.
Suy ra không cùng phương với
Do đó phương trình tham số ở đáp án D không phải là phương trình tham số của (d).
Vì vậy phương án D sai.
Vậy ta chọn phương án A.