X

Toán lớp 10 Chân trời sáng tạo

Cho góc α (0 độ bé hơn bằng alpha bé hơn bằng 180 độ) với tan alpha = ‒3. Giá trị của


Câu hỏi:

Cho góc α (0° ≤ α ≤ 180°) với tanα = ‒3. Giá trị của P=6sinα7cosα7sinα+6cosα bằng bao nhiêu?

A. P=43;

B. P=-43;

C. P=53;

D. P=53.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Vì tanα = ‒3 nên sinαcosα=3 do đó cosα ≠ 0

Ta có: P=6sinα7cosα7sinα+6cosα

P=6sinα7cosαcosα7sinα+6cosαcosα (do cosα ≠ 0)

P=6sinαcosα77sinαcosα+6

P=6.3773+6=2515=53 

Vậy P=53. 

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho α là góc tù. Khẳng định nào sau đây là đúng?

Xem lời giải »


Câu 2:

Cho hai góc α và β (0° ≤ α, β ≤ 180°) với α + β = 90°. Giá trị của biểu thức P = cosα.cosβ ‒ sinα.sinβ là:

Xem lời giải »


Câu 3:

Trong các đẳng thức sau, đẳng thức nào đúng?

Xem lời giải »


Câu 4:

Cho tam giác ABC. Giá trị biểu thức sinA.cos(B + C) + cosA.sin(B + C) là:

Xem lời giải »


Câu 5:

Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

Xem lời giải »


Câu 6:

Cho góc α (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

Xem lời giải »


Câu 7:

Cho hai góc α và β (0° ≤ α, β ≤ 180°) với α + β = 180°, giá trị của biểu thức: M = cosα.cosβ – sinβ.sinα là:

Xem lời giải »


Câu 8:

Cho góc α với cosα=32 . Giá trị của biểu thức: A = sin2α – 3tanα + cot3α là:

Xem lời giải »