Cho hàm số f( x ) = - 2x + 1 khi x nhỏ hơn hoặc bằng - 3; x + 7/2 khi x > - 3. Nếu f(x0) = 5 thì x0 bằng: A. –2; B. 3; C. 0; D. 1.
Câu hỏi:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 2x + 1,\,\,\,\,khi\,\,x \le - 3\\\frac{{x + 7}}{2},\,\,\,\,\,\,\,\,khi\,\,x > - 3\end{array} \right.\). Nếu f(x0) = 5 thì x0 bằng:
A. –2;
B. 3;
C. 0;
D. 1.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Trường hợp 1: x0 ≤ –3.
Ta có f(x0) = 5.
⇔ –2x0 + 1 = 5.
⇔ –2x0 = 4.
⇔ x0 = –2.
So với điều kiện x0 ≤ –3, ta loại x0 = –2.
Trường hợp 2: x0 > –3.
Ta có f(x0) = 5.
\( \Leftrightarrow \frac{{{x_0} + 7}}{2} = 5\).
⇔ x0 + 7 = 10.
⇔ x0 = 3.
So với điều kiện x0 > –3, ta nhận x0 = 3.
Vì vậy nếu f(x0) = 5 thì x0 = 3.
Vậy ta chọn phương án B.
Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:
Câu 1:
Giá trị m để đồ thị hàm số y = 2x – m + 6 đi qua điểm H(2; –5) là:
Xem lời giải »
Câu 2:
Đồ thị hàm số y = –x2 + 2x + 3 cắt trục hoành tại mấy điểm?
Xem lời giải »
Câu 3:
Hàm số bậc hai có bảng biến thiên như hình vẽ dưới đây là:
Xem lời giải »
Câu 4:
Xác định các hệ số m, n để parabol (P): y = mx2 + 4x – n (m ≠ 0) có đỉnh S(–1; –5).
Xem lời giải »
Câu 5:
Cho hàm số \(f\left( x \right) = \sqrt {2x - 7} \). Khẳng định nào sau đây đúng?
Xem lời giải »
Câu 6:
Cho hàm số \[y = h\left( x \right) = \left\{ \begin{array}{l} - 2\left( {{x^2} + 1} \right),\,\,\,khi\,\,x \le 1\\4\sqrt {x - 1} ,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 1\end{array} \right.\]. Khi đó \(h\left( {\frac{{\sqrt 2 }}{2}} \right)\) bằng:
Xem lời giải »
Câu 7:
Cho hàm số y = f(x) xác định trên đọa [–3; 3] và có đồ thị được biểu diễn như hình bên:
Khẳng định nào sau đây đúng?
Xem lời giải »