Phương trình tiếp tuyến đi qua điểm A(5; –2) của đường tròn (C): (x – 1)^2 + (y + 2)^2 = 8 là:
Câu hỏi:
Phương trình tiếp tuyến đi qua điểm A(5; –2) của đường tròn (C): (x – 1)2 + (y + 2)2 = 8 là:
A. x – 5 = 0;
B. x + y – 3 = 0 hoặc x – y – 7 = 0;
C. x – 5 = 0 hoặc x + y – 3 = 0;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Đường tròn (C) có tâm I(1; –2) và bán kính R = .
Giả sử tiếp tuyến có vectơ pháp tuyến là (a2 + b2 ≠ 0).
Phương trình tiếp tuyến d đi qua điểm A(5; –2) và nhận làm vectơ pháp tuyến là:
a(x – 5) + b(y + 2) = 0 hay ax + by – 5a + 2b = 0.
Ta có:
|a – 2b – 5a + 2b| =
(– 4a)2 = 8(a2 + b2)
16a2 – 8a2 = 8b2
a2 = b2
a = b hoặc a = – b.
Với a = b, chọn b = 1 thì a = 1.
Khi đó phương trình d là x + y – 3 = 0.
Với a = – b, chọn b = – 1 thì a = 1.
Khi đó phương trình d là x – y – 7 = 0.
Vậy ta chọn phương án B.