Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được
Câu hỏi:
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 |
5 |
7 |
6 |
2 |
5 |
9 |
7 |
6 |
9 |
20 |
6 |
10 |
7 |
5 |
8 |
9 |
7 |
8 |
5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
A. 0; 2 và 20;
C. 20
D. 0
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có bảng tần số sau:
Số cuộn phim |
0 |
2 |
5 |
6 |
7 |
8 |
9 |
10 |
20 |
|
Số nhiếp ảnh gia |
1 |
1 |
4 |
3 |
4 |
2 |
3 |
1 |
1 |
n = 20 |
- Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
Do đó Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
Do đó Q1 = 5.
- Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
Do đó Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.