X

Toán lớp 10 Chân trời sáng tạo

Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:


Câu hỏi:

Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

A. 23

B. 32

C. 4

D. 5

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Diện tích tam giác ABC là: S=12.AB.AC.sinAsinA=2SAB.AC

sinA=2.125.8=35A^36°52'  (vì góc A là góc nhọn)

Xét tam giác ABC có AB = 5, AC = 8 và A^36°52', áp dụng định lí côsin ta có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

BC2 ≈ 52 + 82 – 2.5.8.cos36°52' ≈ 25

Þ BC ≈ 5.

Vậy BC ≈ 5.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

Xem lời giải »


Câu 2:

Tam giác ABC có A^=68°12',B^=34°44', AB = 117. Độ dài cạnh AC là khoảng:

Xem lời giải »


Câu 3:

Tam giác ABC có AB=2;AC=3 C^=45°. Độ dài cạnh BC là:

Xem lời giải »


Câu 4:

Cho tam giác ABC có AB=3+1,AC=6, BC = 2. Số đo của B^A^ là:

Xem lời giải »


Câu 5:

Cho tam giác ABC có AB = 5, A^=40°,B^=60°. Độ dài BC gần nhất với kết quả nào?

Xem lời giải »


Câu 6:

Cho tam giác ABC. Biết AB = 2, BC = 3 và ABC^=60°. Chu vi và diện tích tam giác ABC lần lượt là:

Xem lời giải »


Câu 7:

Tam giác ABC vuông tại B. Trên cạnh AC lấy hai điểm M, N sao cho các góc ABM^, MBN^, NBC^ bằng nhau. Đặt AB = q, BC = m, BM = x, BN = y. Trong các hệ thức sau, hệ thức nào đúng?

Xem lời giải »


Câu 8:

Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (Đại Nội – Huế), người ta cắm hai cọc AM và BN cao 1,5 mét so với mặt đất. Hai cọc này song song và cách nhau 10 mét và thẳng hàng so với tim cột cờ (Hình vẽ minh họa). Đặt giác kế tại đỉnh A và B để nhắm đến đỉnh cột cờ, người ta được các góc lần lượt là 51°40' và 45°39' so với đường song song mặt đất.

Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (ảnh 1)

Chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ hai) là:

Xem lời giải »