Giải Toán 10 trang 56 Tập 1 Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm giải Toán 10 trang 56 Tập 1 trong Bài 2: Hàm số bậc hai Toán lớp 10 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 56.
Giải Toán 10 trang 56 Tập 1 Chân trời sáng tạo
Bài 1 trang 56 Toán lớp 10 Tập 1: Hàm số nào sau đây là hàm số bậc hai?
a) y = 9x2 + 5x + 4;
b) y = 3x3 + 2x + 1;
c) y = -4(x + 2)3 + 2(2x3 + 1) + 5;
d) y = 5x2 + + 2.
Lời giải:
a) y = 9x2 + 5x + 4 là hàm số bậc hai với a = 9, b = 5 và c = 4.
b) y = 3x3 + 2x + 1 không là hàm số bậc hai vì bậc cao nhất là bậc ba.
c) y = -4(x + 2)3 + 2(2x3 + 1) + 5
⇔ y = -4(x3 + 3x2.2 + 3.x.22 + 23) + 4x3 + 2 + 5
⇔ y = -4x3 – 24x2 – 48x – 32 + 4x3 + 2 + 5
⇔ y = – 24x2 – 48x – 25
Là hàm số bậc hai với a = -24, b = -48, c = -25.
d) y = 5x2 + + 2 không là hàm số bậc hai vì có chứa hạng tử .
Bài 2 trang 56 Toán lớp 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai.
a) y = mx4 + (m + 1)x2 + x + 3;
b) y = (m – 2)x3 + (m – 1)x2 + 5.
Lời giải:
a) Để hàm số y = mx4 + (m + 1)x2 + x + 3 là hàm bậc hai thì hệ số của x4 phải bằng 0 và hệ số của x2 phải khác không tức là:
Vậy với m = 0 thì hàm số đã cho là hàm số bậc hai.
b) Để hàm số y = (m – 2)x3 + (m – 1)x2 + 5 là hàm số bậc hai thì hệ số của x3 phải bằng 0 và hệ số của x2 phải khác không tức là:
Vậy với m = 2 thì hàm số đã cho là hàm số bậc hai.
Bài 3 trang 56 Toán lớp 10 Tập 1: Lập bảng biến thiên của hàm số y = x2 + 2x + 3. Hàm số này có giá trị lớn nhất hay nhỏ nhất? Tìm giá trị đó.
Lời giải:
Xét hàm số bậc hai: y = x2 + 2x + 3 có a = 1, b = 2 và c = 3.
Đỉnh S có tọa độ xs = , ys = (-1)2 + 2.(-1) + 3 = 2. Hay S(-1; 2).
Vì hàm số bậc hai có a = 1 > 0 nên ta có bảng biến thiên sau:
Hàm số có giá trị nhỏ nhất bằng 2 khi x = -1.
Bài 4 trang 56 Toán lớp 10 Tập 1Cho hàm số bậc hai y = f(x) = ax2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5.
a) Hãy xác định giá trị của các hệ số a, b, c.
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Lời giải:
Ta có:
f(0) = a.02 + b.0 + c = 1 ⇔ c = 1.
f(1) = a.12 + b.1 + c = 2 ⇔ a + b + c = 2.
f(2) = a.22 + b.2 + c = 5 ⇔ 4a + 2b + c = 5.
Khi đó, ta có hệ phương trình:
Vậy a = 1, b = 0 và c = 1.
b) Với a = 1, b = 0 và c = 1 thì ta có hàm số: y = x2 + 1.
Xét hàm số bậc hai: y = x2 + 1, có:
Đỉnh S có tọa độ xs = , ys = 02 + 1 = 1. Hay S(0; 1).
Vì hàm số bậc hai có a = 1 > 0 nên ta có bảng biến thiên sau:
Dựa vào bảng biến thiên ta có:
Hàm số có giá trị nhỏ nhất bằng 1 khi x = 0. Do đó tập giá trị của hàm số là [1; +∞).
Hàm số nghịch biến trên khoảng (-∞;0) và đồng biến trên khoảng (0; +∞).
Bài 5 trang 56 Toán lớp 10 Tập 1: Cho hàm số y = 2x2 + x + m. Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5.
Lời giải:
Xét hàm số y = 2x2 + x + m có a = 2, b = 1 và c = m.
Điểm đỉnh S có tọa độ xS = , yS =
Hàm số có a = 2 > 0 nên giá trị nhỏ nhất của hàm số là m –
Mà giá trị nhỏ nhất bằng 5 nên m – = 5 ⇔ m =
Vậy với m = thì giá trị nhỏ nhất của hàm số là 5.
Bài 6 trang 56 Toán lớp 10 Tập 1: Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = -x2 + 2x + 3;
c) y = -3x2 + 6x;
d) y = 2x2 – 5.
Lời giải:
a) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = 2x2 + 4x – 1 là một parabol (P):
- Có đỉnh S với hoành độ xS = -1, tung độ yS = -3;
- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay lên trên vì a > 0;
- Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).
Ngoài ra, phương trình 2x2 + 4x – 1 = 0 có hai nghiệm phân biệt x1 = và x2 = nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ và .
Ta được đồ thị hàm số như sau:
b) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = -x2 + 2x + 3 là một parabol (P):
- Có đỉnh S với hoành độ xS = 1, tung độ yS = 4;
- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay xuống dưới vì a < 0;
- Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).
Ngoài ra, phương trình -x2 + 2x + 3 = 0 có hai nghiệm phân biệt x1 = 3 và x2 = -1 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (3; 0) và (-1; 0).
Ta được đồ thị hàm số như sau:
c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = -3x2 + 6x là một parabol (P):
- Có đỉnh S với hoành độ xS = 1, tung độ yS = 3;
- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay xuống dưới vì a < 0;
- Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua điểm có tọa độ (0; 0).
Ngoài ra, phương trình -3x2 + 6x = 0 có hai nghiệm phân biệt x1 = 0 và x2 = 2 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (0; 0) và (2; 0).
Ta được đồ thị hàm số như sau:
d) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = 2x2 – 5 là một parabol (P):
- Có đỉnh S với hoành độ xS = 0, tung độ yS = -5;
- Có trục đối xứng là đường thẳng x = 0 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay lên trên vì a > 0;
- Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).
Ngoài ra, phương trình 2x2 – 5 = 0 có hai nghiệm phân biệt x1 = và x2 = nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (; 0) và (; 0).
Ta được đồ thị hàm số như sau:
Bài 7 trang 56 Toán lớp 10 Tập 1: Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
(P1): y = - 2x2 – 4x + 2;
(P2): y = 3x2 – 6x + 5;
(P3): y = 4x2 – 8x + 7;
(P4): y = -3x2 – 6x + 1.
Lời giải:
+) (P1): y = - 2x2 – 4x + 2
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = - 2x2 – 4x + 2 là một parabol (P1):
- Có đỉnh S với hoành độ xS = -1, tung độ yS = 4;
- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay xuống dưới vì a < 0;
- Cắt trục tung tại điểm có tung độ bằng 2, tức là đồ thị đi qua điểm có tọa độ (0; 2).
Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P1) là đường cong màu xanh lá cây.
+) (P2): y = 3x2 – 6x + 5;
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = 3x2 – 6x + 5 là một parabol (P2):
- Có đỉnh S với hoành độ xS = 1, tung độ yS = 2;
- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay lên trên vì a > 0;
- Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P2) là đường cong màu xanh dương.
+) (P3): y = 4x2 – 8x + 7:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = 4x2 – 8x + 7 là một parabol (P3):
- Có đỉnh S với hoành độ xS = 1, tung độ yS = 3;
- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay lên trên vì a > 0;
- Cắt trục tung tại điểm có tung độ bằng 7, tức là đồ thị đi qua điểm có tọa độ (0; 7).
Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P3) là đường cong màu đỏ.
+) (P4): y = -3x2 – 6x + 1:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = -3x2 – 6x – 1 là một parabol (P4):
- Có đỉnh S với hoành độ xS = -1, tung độ yS = 2;
- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay xuống dưới vì a < 0;
- Cắt trục tung tại điểm có tung độ bằng 1, tức là đồ thị đi qua điểm có tọa độ (0; -1).
Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P4) là đường cong màu cam.
Lời giải bài tập Toán lớp 10 Bài 2: Hàm số bậc hai Chân trời sáng tạo hay khác: