X

Toán lớp 10 Chân trời sáng tạo

Trong mặt phẳng Oxy, cho ∆ABC có A(–3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là trực tâm của ∆ABC. Giá trị của a + 6b bằng:


Câu hỏi:

Trong mặt phẳng Oxy, cho ∆ABC có A(–3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là trực tâm của ∆ABC. Giá trị của a + 6b bằng:

A. 3;            

B. 6;            

C. 7;            

D. 5.

Trả lời:

Trong mặt phẳng Oxy, cho ∆ABC có A(–3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là trực tâm của ∆ABC. Giá trị của a + 6b bằng: (ảnh 1)

+ Với A(–3; 0), B(3; 0), C(2; 6)H(a; b) ta có:

BC=(1;6),  AC=(5;6)AH=(a+3;b),  BH=(a3;b)

+ Vì H là trực tâm của ∆ABC nên AH BC.

Suy ra AHBC

Do đó AH.BC=0

Khi đó ta có (a + 3).(–1) + 6b = 0

Vì vậy –a + 6b – 3 = 0     (1).

+ Vì H là trực tâm của ∆ABC nên BH AC.

Suy ra BHAC

Do đó BH.AC=0

Khi đó ta có (a – 3).5 + 6b = 0

Vì vậy 5a + 6b – 15 = 0   (2).

Từ (1) và (2), ta có hệ phương trình:

{a+6b3=05a+6b15=0{a=2b=56

Vậy ta chọn phương án C.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Trong mặt phẳng Oxy, cho ∆ABC có A(–4; 1), B(2; 4), C(2; –2). Tọa độ trọng tâm I của ∆ABC là:

Xem lời giải »


Câu 2:

Cho u=(4;5)  và v=(3;a)  . Tìm a để uv

Xem lời giải »


Câu 3:

Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:

Xem lời giải »


Câu 4:

Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng  là:

Xem lời giải »


Câu 5:

Trong mặt phẳng với hệ tọa độ Oxy, cho ∆ABC có A(3; 5), B(9; 7), C(11; –1). Gọi M, N lần lượt là trung điểm của AB và AC. Tọa độ của MN  là:

Xem lời giải »


Câu 6:

Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:

Xem lời giải »


Câu 7:

Giao điểm M của hai đường thẳng (d): {x=12ty=3+5t  và (d’): 3x – 2y – 1 = 0 là:

Xem lời giải »


Câu 8:

Cặp đường thẳng nào sau đây vuông góc với nhau?

Xem lời giải »