a) Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi


Câu hỏi:

a) Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi trường hợp sau:

α=900;

α<900;

α>900;

b) Khi 00<α<900, nêu mối quan hệ giữa cosα,sinαvới hoành độ và tung độ của điểm M.

Trả lời:

a)

Gọi điểm A có tọa độ A(1; 0).

a) Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi  (ảnh 1)

α = 90o hay AOM^=90o . Khi đó, điểm M có tọa độ M(0; 1).

a) Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi  (ảnh 2)
α < 90o hay AOM^<90o .

Do đó, điểm M(x0; y0) nằm trên cung tròn  (không tính điểm C) thỏa mãn 0 < x0 ≤ 1, 0 ≤ y0 < 1.

a) Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi  (ảnh 3)

 

α > 90o hay .

Do đó, điểm M(x0; y0) nằm trên cung tròn  (không tính điểm C) thỏa mãn −1 ≤ x0 < 0, 0 ≤ y0 < 1.

b) Khi 0o < α < 90o

Kẻ MH ^ Ox, MK ^ Oy (H Î Ox, H Î Oy). Khi đó MOH^=α .

a) Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi  (ảnh 4)

Gọi điểm M có tọa độ M(x0; y0).

Xét tứ giác MKOH có:

 (Ox ^ Oy)

 (MH ^ Ox)

 (MK ^ Oy)

Do đó tứ giác MKOH là hình chữ nhật.

Suy ra OH = |x0| = x0; MH = OK = |y0| = y0.

Ta có OM = 1 (bán kính đường tròn đơn vị).

Xét ∆MHO vuông tại H, ta có:

sinα=MHOM=y01=y0.

Hay sin α = y0.

Ta lại có: cosα=OHOM=x01=x0 .

Hay cos α = x0.

Vậy cos α là hoành độ của điểm M và sin α là tung độ của điểm M.

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

Mở đầu trang 33 SGK Toán 10 tập 1:

Mở đầu trang 33 SGK Toán 10 tập 1 (ảnh 1)

Xem lời giải »


Câu 2:

Tìm các giá trị lượng giác của góc 1200 (H.3.4).

Tìm các giá trị lượng giác của góc 1200 (H.3.4).  (ảnh 1)

Xem lời giải »


Câu 3:

Nêu nhận xét về vị trí của hai điểm M và M’ đối với trục Oy. Từ đó nêu các mối quan hệ giữa sinα và sin1800α, giữa cosα cos1800α.

Nêu nhận xét về vị trí của hai điểm M và M’ đối với trục Oy. Từ đó nêu các mối quan (ảnh 1)

Xem lời giải »


Câu 4:

Trong Hình 3.6 hai điểm M, N ứng với hai góc phụ nhau α 900αxOM^=α,xON^=900α. Chứng minh rằng ΔMOP = ΔNOQ. Từ đó nêu mối quan hệ giữa cosα và sin900α

Trong Hình 3.6 hai điểm M, N ứng với hai góc phụ nhau alpha và 90 độ - alpha )góc xOM (ảnh 1)

Xem lời giải »


Câu 5:

Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m (H.3.7), thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào Cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay người đó ở độ cao bao nhiêu mét?

Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m (H.3.7) (ảnh 1)

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2