Bài 6.15 trang 24 Toán 10 Tập 2 - Kết nối tri thức
Xét dấu các tam thức bậc hai sau:
Giải Toán lớp 10 Bài 17: Dấu của tam thức bậc hai
Bài 6.15 trang 24 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:
a) 3x2 – 4x + 1;
b) x2 + 2x + 1;
c) – x2 + 3x – 2;
d) – x2 + x – 1.
Lời giải:
a) f(x) = 3x2 – 4x + 1 có ∆' = (– 2)2 – 3 . 1 = 1 > 0, hệ số a = 3 > 0 và có hai nghiệm phân biệt x1 = ; x2 = 1.
Do đó ta có bảng xét dấu f(x):
Suy ra f(x) > 0 với mọi và f(x) < 0 với mọi .
b) f(x) = x2 + 2x + 1 có ∆' = 12 – 1 . 1 = 0 và a = 1 nên f(x) có nghiệm kép x = – 1 và f(x) > 0 với mọi x ≠ – 1.
c) f(x) = – x2 + 3x – 2 có ∆ = 32 – 4 . (– 1) . (– 2) = 1 > 0, hệ số a = – 1 < 0 và có hai nghiệm phân biệt x1 = 1; x2 = 2.
Do đó ta có bảng xét dấu f(x):
Suy ra f(x) > 0 với mọi x ∈ (1; 2) và f(x) < 0 với mọi x ∈ (– ∞; 1) ∪ (2; + ∞).
d) f(x) = – x2 + x – 1 có ∆ = 12 – 4 . (– 1) . (– 1) = – 3 < 0 và hệ số a = – 1 < 0 nên f(x) < 0 với mọi .
Lời giải bài tập Toán 10 Bài 17: Dấu của tam thức bậc hai hay, chi tiết khác:
HĐ1 trang 19 Toán 10 Tập 2: Hãy chỉ ra một vài đặc điểm chung của các biểu thức dưới đây ....
Luyện tập 1 trang 19 Toán 10 Tập 2: Hãy cho biết biểu thức nào sau đây là tam thức bậc hai ....
HĐ2 trang 19 Toán 10 Tập 2: Cho hàm số bậc hai y = f(x) = x2 – 4x + 3. ....
HĐ3 trang 20 Toán 10 Tập 2: Cho đồ thị hàm số y = g(x) = – 2x2 + x + 3 như Hình 6.18 ....
HĐ4 trang 20 Toán 10 Tập 2: Nêu nội dung thay vào ô có dấu “?” trong bảng sau cho thích hợp ....
Luyện tập 2 trang 22 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau: ....