Bên trong một hồ bơi, người ta dự định thiết kế hai bể sục nửa hình tròn bằng nhau và một bể sục hình tròn (H.7.15a) để người bơi có thể ngồi tựa lưng vào thành các bể sục thư giãn. Hãy tìm b
Câu hỏi:
Trả lời:
Hướng dẫn giải
Gọi bán kính của bể hình tròn và bể nửa hình tròn tương ứng là x, y (m) (x, y > 0).
Chu vi của bể hình tròn là: 2πx = 2 . 3,14 . x = 6,28x (m).
Vì hai bể còn lại là hai bể có dạng nửa hình tròn bằng nhau nên tổng chu vi của hai bể này bằng tổng chu vi của đường tròn bán kính y (m) với 2 lần độ dài đường kính của đường tròn đó, do đó chu vi của hai bể nửa hình tròn là:
2πy + 2 . 2y = 2 . 3,14 . y + 4y = 10,28y (m).
Tổng chu vi của ba bể là 32 m nên ta có: 6,28x + 10,28y = 32 hay 1,57x + 2,57y – 8 = 0.
Diện tích của bể hình tròn là: πx2 = 3,14x2 (m2).
Diện tích của hai bể nửa hình tròn là: πy2 = 3,14y2 (m2).
Gọi tổng diện tích của ba bể sục là S (m2). Khi đó ta có:
3,14x2 + 3,14y2 = S hay x2 + y2 = \(\frac{S}{{3,14}}\).
Trong mặt phẳng tọa độ Oxy, xét đường tròn (C): x2 + y2 = \(\frac{S}{{3,14}}\) có tâm O(0; 0), bán kính R = \(\sqrt {\frac{S}{{3,14}}} \) và đường thẳng ∆: 1,57x + 2,57y – 8 = 0. Khi đó bài toán được chuyển thành: Tìm R nhỏ nhất để (C) và ∆ ít nhất một điểm chung, với hoành độ và tung độ đều là các số dương.
Bài toán trên tương đương với ∆ tiếp xúc với (C), đồng thời khi đó điểm M trùng với điểm H là hình chiếu vuông góc của O trên ∆.
Ta có: OH ⊥ ∆ nên .
Suy ra đường thẳng OH có một vectơ pháp tuyến là .
Phương trình đường thẳng OH là:
2,57(x – 0) – 1,57(y – 0) = 0 hay 2,57x – 1,57y = 0.
Điểm H là giao điểm của đường thẳng OH và đường thẳng ∆ nên tọa độ của H là nghiệm của hệ phương trình .
Giải hệ trên ta được .
Vậy bán kính bể sục hình tròn xấp xỉ bằng 1,38 m và bể sục nửa hình tròn xấp xỉ bằng 2,27 m thì thỏa mãn yêu cầu bài toán.