Cho đường thẳng d1: 3x + 4y + 12 = 0 và d2 : x=2+at và y= 1-2t. Tìm giá trị của tham số a
Câu hỏi:
Cho đường thẳng d1: 3x + 4y + 12 = 0 và d2 : . Tìm giá trị của tham số a để góc giữa hai đường thẳng d1 và d2 bằng 45°.
A. a = hoặc a = −14;
B. a = hoặc a = −14;
C. a = 5 hoặc a = −14;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Gọi α là góc giữa hai đường thẳng d1 và d2
Ta có: vectơ pháp tuyến của đường thẳng d1 là: (3; 4)
Đường thẳng d2 có vectơ chỉ phương là ⇒ vectơ pháp tuyến là (2; a)
Theo giả thiết ta có:
cos α = = cos 45° =
⇔ =
⇔
⇒ 8(3 + 2a)2 = 25.(a2 + 4)
⇔ 8(9 + 12a + 4a2) = 25a2 + 100
⇔ 32a2 + 96a + 72 = 25a2 + 100
⇔ 7a2 + 96a – 28 = 0
⇒
Vậy với a = hoặc a = −14 thì góc giữa hai đường thẳng d1 và d2 bằng 45°.