Cho tam giác ABC có A(2; -1); B(2; -2) và C(0; -1). Bán kính đường tròn nội tiếp tam giác ABC là:


Câu hỏi:

Cho tam giác ABC có A(2; -1); B(2; -2) và C(0; -1). Bán kính đường tròn nội tiếp tam giác ABC là:

A. 352

B. 3+52

C. 35

D. 235

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

BC=(2;1) BC = (2)2+12=5

AB=(0;1) AB = 02+12=1;

AC=(2;0) AC = 22+02=2.

Đường thẳng BC nhận BC là một vectơ chỉ phương , do đó đường thẳng BC có vectơ pháp tuyến là n=(1;2) và đi qua điểm C(0; -1).

Khi đó phương trình đường thẳng BC là: x + 2(y + 1) = 0 hay x + 2y + 2 = 0

d(A; BC) = 2+2.(1)+212+2225

SABC = 12.d(A; BC) . BC = 12.25.5= 1 (đvdt)

Mặt khác, ta có: SABC = p.r

Do đó bán kính đường tròn nội tiếp tam giác ABC là:

r = SABCp= 11+2+52 23+5=352

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Cho tam giác ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0 . Toạ độ điểm A là:

Xem lời giải »


Câu 2:

Cho ba đường thẳng d1: 2x + y – 1 = 0, d2 : x + 2y + 1 = 0; d3: mx – y – 7 = 0. Tìm giá trị của tham số m để 3 đường thẳng trên đồng quy.

Xem lời giải »


Câu 3:

Cho đường thẳng d1: 3x + 4y + 12 = 0 và d2 : x=2+aty=12t. Tìm giá trị của tham số a để góc giữa hai đường thẳng d1 và d2 bằng 45°.

Xem lời giải »


Câu 4:

Cho tam giác ABC có phương trình các cạnh AB: 3x – y + 4 = 0, AC : x + 2y – 4 = 0, BC: 2x + 3y – 2 = 0. Khi đó diện tích tam giác ABC là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2