Cho đường thẳng ∆: y = ax + b với a ≠ 0. a) Chứng minh rằng ∆ cắt trục hoành. b) Lập phương trình đường thẳng ∆0 đi qua O(0; 0) và song song (hoặc trùng) với ∆. c) Hãy chỉ ra mối quan hệ g
Câu hỏi:
Cho đường thẳng ∆: y = ax + b với a ≠ 0.
a) Chứng minh rằng ∆ cắt trục hoành.
b) Lập phương trình đường thẳng ∆0 đi qua O(0; 0) và song song (hoặc trùng) với ∆.
c) Hãy chỉ ra mối quan hệ giữa α∆ và α∆0.
d) Gọi M là giao điểm của ∆0 với nửa đường tròn đơn vị và x0 là hoành độ của M. Tính tung độ của M theo x0 và a. Từ đó, chứng minh rằng tanα∆ = a.
Trả lời:
Hướng dẫn giải
a) Phương trình trục hoành Ox: y = 0.
Xét hệ \(\left\{ \begin{array}{l}y = 0\\y = ax + b\end{array} \right.\).
Khi đó ta có: ax + b = 0 ⇔ x = \( - \frac{b}{a}\) (do a ≠ 0).
Do đó hệ trên có nghiệm duy nhất \(\left( { - \frac{b}{a};\,0} \right)\) nên ∆ và trục hoành cắt nhau tại giao điểm có tọa độ \(\left( { - \frac{b}{a};\,0} \right)\).
b) Đường thẳng ∆ có vectơ pháp tuyến là \(\overrightarrow n = \left( {a;\,\, - 1} \right)\).
Do đường thẳng ∆0 song song hoặc trùng với ∆ nên ta chọn vectơ \(\overrightarrow n \) là một vectơ pháp tuyến của ∆0.
Đường thẳng ∆0 đi qua điểm O(0; 0) và nhận \(\overrightarrow n = \left( {a;\,\, - 1} \right)\) làm vectơ pháp tuyến.
Khi đó phương trình đường thẳng ∆0 là: a(x – 0) – (y – 0) = 0 hay ax – y = 0 hay y = ax.
c) Khi ∆ và ∆0 trùng nhau thì α∆ và α∆0 trùng nhau nên α∆ = α∆0.
Khi ∆ và ∆0 song song thì α∆ = α∆0 (do hai góc ở vị trí đồng vị).
Vậy α∆ = α∆0.
d) Vì M thuộc đường thẳng ∆0 nên tọa độ điểm M thỏa mãn phương trình đường thẳng ∆0 nên khi có hoành độ x0 thì tung độ của M là y0 = ax0.
Ta có tanα∆0 = tan\(\widehat {xOM}\) = \(\frac{{{y_0}}}{{{x_0}}} = \frac{{a{x_0}}}{{{x_0}}} = a\) (theo định nghĩa giá trị lượng giác)
Do α∆ = α∆0 nên tanα∆ = tanα∆0 = a.
Vậy tanα∆ = a.
Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:
Câu 1:
A. Các câu hỏi trong bài
Trong mặt phẳng tọa độ, mỗi đường thẳng đều có đối tượng đại số tương ứng, gọi là phương trình của nó. Vậy các yếu tố liên quan tới đường thẳng được thể hiện như thế nào qua phương trình tương ứng?
Xem lời giải »
Câu 2:
Trong mặt phẳng tọa độ, cho hai đường thẳng
∆1: x – 2y + 3 = 0,
∆2: 3x – y – 1 = 0.
a) Điểm M(1; 2) có thuộc cả hai đường thẳng nói trên hay không?
b) Giải hệ \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).
c) Chỉ ra mối quan hệ giữa tọa độ giao điểm của ∆1 và ∆2 với nghiệm của hệ phương trình trên.
Xem lời giải »
Câu 3:
Xét vị trí tương đối giữa các cặp đường thẳng sau:
a) ∆1: x + 4y – 3 = 0 và ∆2: x – 4y – 3 = 0;
b) ∆1: x + 2y – \(\sqrt 5 \)= 0 và ∆2: 2x + 4y – \(3\sqrt 5 \) = 0.
Xem lời giải »
Câu 4:
Hai đường thẳng ∆1 và ∆2 cắt nhau tạo thành bốn góc (H.7.6). Các số đo của bốn góc đó có mối quan hệ gì với nhau?
Xem lời giải »
Câu 5:
Cho điểm M(x0; y0) và đường thẳng ∆: ax + by + c = 0 có vectơ pháp tuyến \(\overrightarrow n \left( {a;\,b} \right)\). Gọi H là hình chiếu vuông góc của M trên ∆ (H.7.9).
a) Chứng minh rằng \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \sqrt {{a^2} + {b^2}} .HM\).
b) Giả sử H có tọa độ (x1; y1). Chứng minh rằng: \(\overrightarrow n .\overrightarrow {HM} \) = a(x0 – x1) + b(y0 – y1) = ax0 + by0 + c.
c) Chứng minh rằng \(HM = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).
Xem lời giải »
Câu 6:
Đo trực tiếp khoảng cách từ điểm M đến đường thẳng ∆ (H.7.10) và giải thích vì sao kết quả đo đạc đó phù hợp với kết quả tính toán trong lời giải Ví dụ 4.
Xem lời giải »
Câu 7:
Tính khoảng cách từ điểm M(1; 2) đến đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 5 + 3t\\y = - 5 - 4t\end{array} \right.\).
Xem lời giải »
Câu 8:
Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11).
a) Chọn hệ trục tọa độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng tọa độ tương ứng với 1 m trong thực tế. Hãy xác định tọa độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF.
b) Nam đứng ở vị trí B câu cá và có thể quăng lưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không ?
Xem lời giải »