Cho hai biểu đồ chấm điểm biểu diễn hãi mẫu số liệu A, B như sau:


Câu hỏi:

Cho hai biểu đồ chấm điểm biểu diễn hãi mẫu số liệu A, B như sau:

Cho hai biểu đồ chấm điểm biểu diễn hãi mẫu số liệu A, B như sau: (ảnh 1)Cho hai biểu đồ chấm điểm biểu diễn hãi mẫu số liệu A, B như sau: (ảnh 2)

Không tính toán, hãy cho biết:

a) Hai mẫu số liệu này có cùng khoảng biến thiên và số trung bình không?

b) Mẫu số liệu nào có phương sai lớn hơn?

Trả lời:

a)

Ta có cả hai mẫu số liệu đều có giá trị nhỏ nhất là 3, giá trị lớn nhất là 9.

Do đó cả hai mẫu số liệu có cùng khoảng biến thiên.

Hai biểu đồ này có dạng đối xứng qua điểm 6 nên giá trị trung bình của hai mẫu số liệu A và B bằng nhau và bằng 6.

b) Từ biểu đồ, ta thấy các giá trị của dãy số liệu B tập trung nhiều hơn quanh giá trị trung bình nên mẫu số liệu B có phương sai nhỏ hơn. Vậy mẫu số liệu A có phương sai lớn hơn.

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình:

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình: (ảnh 1)

Điểm trung bình môn học kì của An và Bình đều là 8,0 nhưng rõ ràng Bình “học đều” hơn An. Có thể dùng những số đặc trưng nào để đo mức độ “học đều”?

Xem lời giải »


Câu 2:

Một cổ động viên đã thống kê điểm số mà hai câu lạc bộ Leicester City và Everton đạt được trong năm mùa giải Ngoại hạng Anh gần đây, từ mùa giải 2014 – 2015 đến mùa giải 2018 – 2019 như sau:

Leicester City: 41   81   44   47   52.

Everton: 47   47   61   49    54.

Cổ động viên cho rằng, Everton thi đấu ổn hơn Leicester City. Em có đồng ý với nhận định này không? Vì sao?

Xem lời giải »


Câu 3:

Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:

163  159  172  167  165  168  170  161.

Tính khoảng biến thiên của mẫu số liệu này.

Xem lời giải »


Câu 4:

Trong một tuần, nhiệt độ cao nhất trong ngày (đơn vị 0C) tại hai thành phố Hà Nội và Điện Biên được cho như sau:

Hà Nội: 23 25 28 28 32 33 35.

Điện Biên: 16 24 26 26 26 27 28.

a) Tính khoảng biến thiên của mỗi mẫu số liệu và so sánh.

b) Em có nhận xét gì về sự ảnh hưởng của giá trị 16 đến khoảng biến thiên của mẫu số liệu về nhiệt độ cao nhất trong ngày tại Điện Biên?

c) Tính các tứ phân vị và hiệu Q3 – Q1 cho mỗi mẫu số liệu. Có thể dùng hiệu này để đo độ phân tán của mẫu số liệu không?

Xem lời giải »


Câu 5:

Cho mẫu số liệu gồm 10 số dương không hoàn toàn giống nhau. Các số đo độ phân tán (khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn) sẽ thay đổi như thế nào nếu:

a) Nhân mỗi giá trị của mẫu số liệu với 2.

b) Cộng mỗi giá trị của mẫu số liệu với 2.

Xem lời giải »


Câu 6:

Từ mẫu số liệu về thuế thuốc lá của 51 thành phố tại một quốc gia, người ta tính được:

Giá trị nhỏ nhất bằng 2,5; Q1 = 36; Q2 = 60; Q3 = 100; giá trị lớn nhất bằng 205.

a) Tỉ lệ thành phố có thuế thuốc lá lớn hơn 36 là bao nhiêu?

b) Chỉ ra hai giá trị sao cho có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này?

c) Tìm khoảng tứ phân vị của mẫu số liệu.

Xem lời giải »


Câu 7:

Mẫu số liệu sau đây cho biết cân nặng của 10 trẻ sơ sinh (đơn vị kg):

2,977          3,155          3,920          3,412          4,236

2,593          3,270          3,813          4,042          3,387.

Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn cho mẫu số liệu này.

Xem lời giải »


Câu 8:

Tỉ lệ thất nghiệp ở một quốc gia vào năm 2007 (đơn vị %) được cho như sau:

7,8     3,2     7,7     8,7     8,6     8,4     7,2     3,6

5,0     4,4     6,7     7,0     4,5     6,0     5,4.

Hãy tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2