Có bao nhiêu đoạn thẳng được tạo thành từ 10 điểm phân biệt khác nhau


Câu hỏi:

Có bao nhiêu đoạn thẳng được tạo thành từ 10 điểm phân biệt khác nhau

A. 45;

B. 90;                                             

C. 35;

D. 55.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Giả sử ta có 2 điểm A, B phân biệt thì có một đoạn thẳng AB (đoạn thẳng AB và đoạn thẳng BA là một)

Vì cứ chọn 2 điểm bất kỳ trong 10 điểm ta được một đoạn thẳng nên mỗi cách chọn ra 2 điểm trong 10 điểm là một tổ hợp chập 2 của 10 phần tử. Vậy số đoạn thẳng được tạo thành từ 10 điểm phân biệt khác nhau là C102 = 45 (đoạn thẳng)

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau

Xem lời giải »


Câu 2:

Cho các số 1; 2; 3; 4; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

Xem lời giải »


Câu 3:

Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.

Xem lời giải »


Câu 4:

Với n là số tự nhiên thỏa mãn Cn4n6+nAn2=454, hệ số của số hạng chứa x4 trong khai triển nhị thức 2xx3n( với x ≠ 0) bằng

Xem lời giải »


Câu 5:

Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:

Xem lời giải »


Câu 6:

Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn?

Xem lời giải »


Câu 7:

Có bao nhiêu cách xếp 5 người thành một hàng dọc

Xem lời giải »


Câu 8:

Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 10

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2