Giải Toán 10 trang 40 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 40 Tập 2 trong Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Toán lớp 10 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 40.

Giải Toán 10 trang 40 Tập 2 Kết nối tri thức

HĐ4 trang 40 Toán 10 Tập 2: Cho điểm M(x0; y0) và đường thẳng ∆: ax + by + c = 0 có vectơ pháp tuyến na;b. Gọi H là hình chiếu vuông góc của M trên ∆ (H.7.9). 

a) Chứng minh rằng n.HM=a2+b2.HM.

b) Giả sử H có tọa độ (x1; y1). Chứng minh rằng: n.HM= a(x0 – x1) + b(y0 – y1) = ax0 + by0 + c. 

c) Chứng minh rằng HM=ax0+by0+ca2+b2

Cho điểm M(x0; y0) và đường thẳng ∆: ax + by + c = 0

Lời giải:

a) Do H là hình chiếu của M lên ∆ nên MH ⊥ ∆.

Vectơ n là vectơ pháp tuyến của ∆ nên giá của vectơ n vuông góc với ∆. 

Khi đó đường thẳng MH song song hoặc trùng với giá của vectơ n nên hai vectơ HM và ncùng phương. 

Do đó hai vectơ HMn cùng hướng hoặc ngược hướng.

+) Nếu hai vectơ HMn cùng hướng thì n.HM=n.HM=a2+b2.HM.

+) Nếu hai vectơ HMn ngược hướng thì n.HM=n.HM=a2+b2.HM.

Vậy n.HM=a2+b2.HM

b) Vì H thuộc ∆ nên tọa độ của H thỏa mãn phương trình ∆, thay tọa độ của H vào phương trình ∆ ta được: ax1 + by1 + c = 0 ⇔ c = – ax1 – by1           (1). 

Ta lại có: HM=x0x1;y0y1.

Suy ra: n.HM=ax0x1+by0y1 = ax0 + by0 – ax1 – by1             (2). 

Từ (1) và (2) suy ra : n.HM=ax0x1+by0y1 = ax0 + by0 + c. 

c) Theo câu a) ta có: n.HM=a2+b2.HM

Theo câu b) ta có: n.HM = ax0 + by0 + c. 

Suy ra: |ax0 + by0 + c| = a2+b2.HM.

Vậy HM=ax0+by0+ca2+b2.

Trải nghiệm trang 40 Toán 10 Tập 2: Đo trực tiếp khoảng cách từ điểm M đến đường thẳng ∆ (H.7.10) và giải thích vì sao kết quả đo đạc đó phù hợp với kết quả tính toán trong lời giải Ví dụ 4. 

Đo trực tiếp khoảng cách từ điểm M đến đường thẳng ∆ (H.7.10)

Lời giải:

Khoảng cách từ M đến đường thẳng ∆ là độ dài đoạn MH. 

Dùng thước ta đo được MH có độ dài bằng 2 ô vuông trên mặt phẳng tọa độ Oxy nên MH = 2. 

Kết quả này hoàn toàn phù hợp với kết quả tính được trong lời giải của Ví dụ 4 vì điểm M ở đây có tọa độ trùng với điểm M của Ví dụ 4 và đường thẳng Δ có phương trình trùng với phương trình trong Ví dụ 4.

Luyện tập 5 trang 40 Toán 10 Tập 2: Tính khoảng cách từ điểm M(1; 2) đến đường thẳng Δ:x=5+3ty=54t

Lời giải:

Đường thẳng Δ:x=5+3ty=54tđi qua điểm A(5; – 5) và có một vectơ chỉ phương là u=3;4, suy ra ∆ có vectơ pháp tuyến là n=4;  3

Do đó, phương trình tổng quát của ∆ là: 4(x – 5) + 3(y + 5) = 0 hay 4x + 3y – 5 = 0. 

Áp dụng công thức tính khoảng cách từ điểm M đến đường thẳng ∆, ta có: 

d(M, ∆) = 4.1+3.2542+32=55=1

Vậy khoảng cách từ điểm M đến đường thẳng ∆ là 1. 

Lời giải bài tập Toán lớp 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Kết nối tri thức hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2