Giải Toán 10 trang 40 Tập 2 Kết nối tri thức
Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 40 Tập 2 trong Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Toán lớp 10 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 40.
Giải Toán 10 trang 40 Tập 2 Kết nối tri thức
HĐ4 trang 40 Toán 10 Tập 2: Cho điểm M(x0; y0) và đường thẳng ∆: ax + by + c = 0 có vectơ pháp tuyến . Gọi H là hình chiếu vuông góc của M trên ∆ (H.7.9).
a) Chứng minh rằng .
b) Giả sử H có tọa độ (x1; y1). Chứng minh rằng: = a(x0 – x1) + b(y0 – y1) = ax0 + by0 + c.
c) Chứng minh rằng .
Lời giải:
a) Do H là hình chiếu của M lên ∆ nên MH ⊥ ∆.
Vectơ là vectơ pháp tuyến của ∆ nên giá của vectơ vuông góc với ∆.
Khi đó đường thẳng MH song song hoặc trùng với giá của vectơ nên hai vectơ và cùng phương.
Do đó hai vectơ và cùng hướng hoặc ngược hướng.
+) Nếu hai vectơ và cùng hướng thì .
+) Nếu hai vectơ và ngược hướng thì .
Vậy .
b) Vì H thuộc ∆ nên tọa độ của H thỏa mãn phương trình ∆, thay tọa độ của H vào phương trình ∆ ta được: ax1 + by1 + c = 0 ⇔ c = – ax1 – by1 (1).
Ta lại có: .
Suy ra: = ax0 + by0 – ax1 – by1 (2).
Từ (1) và (2) suy ra : = ax0 + by0 + c.
c) Theo câu a) ta có: .
Theo câu b) ta có: = ax0 + by0 + c.
Suy ra: |ax0 + by0 + c| = .
Vậy .
Trải nghiệm trang 40 Toán 10 Tập 2: Đo trực tiếp khoảng cách từ điểm M đến đường thẳng ∆ (H.7.10) và giải thích vì sao kết quả đo đạc đó phù hợp với kết quả tính toán trong lời giải Ví dụ 4.
Lời giải:
Khoảng cách từ M đến đường thẳng ∆ là độ dài đoạn MH.
Dùng thước ta đo được MH có độ dài bằng 2 ô vuông trên mặt phẳng tọa độ Oxy nên MH = 2.
Kết quả này hoàn toàn phù hợp với kết quả tính được trong lời giải của Ví dụ 4 vì điểm M ở đây có tọa độ trùng với điểm M của Ví dụ 4 và đường thẳng Δ có phương trình trùng với phương trình trong Ví dụ 4.
Luyện tập 5 trang 40 Toán 10 Tập 2: Tính khoảng cách từ điểm M(1; 2) đến đường thẳng .
Lời giải:
Đường thẳng đi qua điểm A(5; – 5) và có một vectơ chỉ phương là , suy ra ∆ có vectơ pháp tuyến là .
Do đó, phương trình tổng quát của ∆ là: 4(x – 5) + 3(y + 5) = 0 hay 4x + 3y – 5 = 0.
Áp dụng công thức tính khoảng cách từ điểm M đến đường thẳng ∆, ta có:
d(M, ∆) = .
Vậy khoảng cách từ điểm M đến đường thẳng ∆ là 1.
Lời giải bài tập Toán lớp 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Kết nối tri thức hay khác: