Giải Toán 10 trang 41 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 41 Tập 2 trong Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Toán lớp 10 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 41.

Giải Toán 10 trang 41 Tập 2 Kết nối tri thức

Vận dụng trang 41 Toán 10 Tập 2: Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11). 

a) Chọn hệ trục tọa độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng tọa độ tương ứng với 1 m trong thực tế. Hãy xác định tọa độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF. 

b) Nam đứng ở vị trí B câu cá và có thể quăng lưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không ? 

Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD

Lời giải:

a) Đặt hệ trục tọa độ như hình vẽ sau: 

Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD

Vì B trùng với gốc tọa độ O nên B có tọa độ là (0; 0). 

Vì ABCD là hình chữ nhật nên CD = AB = 12 m, BC = AD = 15 m. 

Điểm A thuộc trục Oy và có AO = AB = 12 m nên A có tọa độ là (0; 12). 

Điểm C thuộc trục Ox và có CO = CB = 15 m nên C có tọa độ là (15; 0). 

Ta có: DC ⊥ Ox (do DC ⊥ BC), DA ⊥ Oy (do DA ⊥ AB) và DC = 12 m, DA = 15 m nên điểm D có tọa độ là (15; 12). 

Từ E kẻ EH vuông góc với BC, H thuộc BC nên EH = AB = 12 m, lại có AE = 5 m, do đó điểm E có tọa độ là (5; 12).

Từ F kẻ FJ vuông góc với AB, J thuộc AB nên FJ = AD = 15 m, lại có CF = 6 m, do đó điểm F có tọa độ là (15; 6). 

Vậy A(0; 12), B(0; 0), C(15; 0), D(15; 12), E(5; 12), F(15; 6). 

Ta có: EF=155;612=10;6

Chọn vectơ u=12EF=5;3 làm vectơ chỉ phương của đường thẳng EF thì vectơ pháp tuyến của đường thẳng EF là n=3;5

Đường thẳng EF đi qua điểm E(5; 12) và có một vectơ pháp tuyến là n=3;5, do đó phương trình đường thẳng EF là: 3(x – 5) + 5(y – 12) = 0 hay 3x + 5y – 75 = 0. 

b) Áp dụng công thức tính khoảng cách, ta có khoảng cách từ B đến EF là: 

dB,EF=3.0+5.07532+52=7534≈ 12,9 m. 

Khoảng cách từ B đến EF là đường ngắn nhất từ B nơi Nam đứng đến EF, lưỡi câu có thể quăng xa 10,7 m và 10,7 m < 12,9 m nên lưỡi câu không thể rơi vào vị trí nuôi vịt. 

Bài 7.7 trang 41 Toán 10 Tập 2: Xét vị trí tương đối giữa các cặp đường thẳng sau: 

a) ∆1: 32x+2y3=0và ∆2: 6x + 2y 6= 0. 

b) d1: x 3y+ 2 = 0 và d2: 3x– 3y + 2 = 0. 

c) m1: x – 2y + 1 = 0 và m2: 3x + y – 2 = 0. 

Lời giải:

a) Đường thẳng ∆1: 32x+2y3=0có vectơ pháp tuyến là n1=32;2

Đường thẳng ∆2: 6x + 2y6 = 0 có vectơ pháp tuyến là n2=6;  2

Ta có: n1=22n2 nên hai vectơ n1 và n2 cùng phương, do đó hai đường thẳng ∆1 và ∆2 song song hoặc trùng nhau. 

Mặt khác, điểm A0;62 vừa thuộc ∆1 vừa thuộc ∆2

Vậy hai đường thẳng ∆1 và ∆2 trùng nhau. 

b) Vectơ pháp tuyến của đường thẳng d1: x3y + 2 = 0 là n1=1;3 và của d2: 3x – 3y + 2 = 0 là n2=3;3

Ta có: n2=3n1 nên hai vectơ n1n2 cùng phương, do đó hai đường thẳng d1 và d2 song song hoặc trùng nhau. 

Mặt khác, điểm B(– 2; 0) thuộc d1 nhưng không thuộc d2

Vậy hai đường thẳng d1 và d2 song song với nhau.

c) Xét hệ phương trình x2y+1=03x+y2=03x6y+3=0       13x+y2=0         2.

Lấy (2) trừ vế theo vế cho (1) ta được: 7y – 5 = 0 y=57.

Thay vào (1) ta được: 3x6.57+3=0x=37

Do đó hệ trên có nghiệm duy nhất 37;57

Vậy hai đường thẳng m1 và m2 cắt nhau tại điểm có tọa độ 37;57.

Bài 7.8 trang 41 Toán 10 Tập 2: Tính góc giữa các cặp đường thẳng sau: 

a) ∆1:3x + y – 4 = 0 và ∆2: x +3y + 3 = 0; 

b) d1: x=1+2ty=3+4tvà d2: x=3+sy=13s           (t, s là các tham số). 

Lời giải:

a) Vectơ pháp tuyến của đường thẳng ∆1: 3x+ y – 4 = 0 là n1=3;  1 và của ∆2: x +3y + 3 = 0 là n2=1;3

Gọi φ là góc giữa hai đường thẳng ∆1 và ∆2. Ta có: 

cosφ = cosn1,  n2=n1.  n2n1.  n2=3.1+1.332+12.12+32=232.2=32

Do đó, góc giữa ∆1 và ∆2 là φ = 30°.

b) Vectơ chỉ phương của đường thẳng d1u1=2;  4, của đường thẳng d2u2=1;3

Suy ra vectơ pháp tuyến của đường thẳng d1n1=4;2, của đường thẳng d2n2=3;1

Gọi α là góc giữa hai đường thẳng d1 và d2. Ta có: 

cosα = cosn1,  n2=n1.  n2n1.  n2=4.3+2.142+22.32+12=1020.10=22

Do đó, góc giữa d1 và d2 là α = 45°.

Bài 7.9 trang 41 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho điểm A(0; – 2) và đường thẳng ∆: x + y – 4 = 0.

a) Tính khoảng cách từ điểm A đến đường thẳng ∆. 

b) Viết phương trình đường thẳng a đi qua điểm M(– 1; 0) và song song với ∆. 

c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với ∆. 

Lời giải:

a) Áp dụng công thức tính khoảng cách, ta có khoảng cách từ điểm A đến đường thẳng ∆ là: d(A, ∆) = 0+2412+12=62=32

Vậy khoảng cách từ điểm A đến đường thẳng ∆ là 32

b) Đường thẳng ∆ có vectơ pháp tuyến là nΔ=1;  1

Do a // ∆, nên vectơ pháp tuyến của a là na=nΔ=1;  1

Đường thẳng a đi qua điểm M(– 1; 0) và có vectơ pháp tuyến là na=1;  1, do đó phương trình đường thẳng a là: 1(x + 1) + 1(y – 0) = 0 hay x + y + 1 = 0. 

c) Đường thẳng ∆ có vectơ chỉ phương là uΔ=1;  1

Do b ⊥ ∆, nên vectơ pháp tuyến của b là nb=uΔ=1;1.

Đường thẳng b đi qua điểm N(0; 3) và có vectơ pháp tuyến là nb=1;1, do đó phương trình đường thẳng b là: 1(x – 0) – 1(y – 3) = 0 hay x – y + 3 = 0. 

Bài 7.10 trang 41 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho tam giác ABC có A(1; 0), B(3; 2) và C(– 2; – 1). 

a) Tính độ dài đường cao kẻ từ đỉnh A của tam giác ABC. 

b) Tính diện tích tam giác ABC. 

Lời giải:

a) Độ dài đường cao kẻ từ đỉnh của tam giác ABC chính là khoảng cách từ điểm A đến đường thẳng BC. 

Ta có: BC=23;12=5;3

Chọn vectơ chỉ phương của đường thẳng BC là u=BC=5;3

Suy ra vectơ pháp tuyến của đường thẳng BC là n=3;  5

Đường thẳng BC đi qua điểm B(3; 2) và có vectơ pháp tuyến n=3;  5, do đó phương trình đường thẳng BC là: 3(x – 3) – 5(y – 2) = 0 hay 3x – 5y + 1 = 0. 

Khi đó khoảng cách từ A đến BC là: 

d(A, BC) = 3.15.0+132+52=434=23417

Vậy độ dài đường cao kẻ từ đỉnh A của tam giác ABC là h = 23417

b) Ta có: BC = BC=52+32=34

Diện tích tam giác ABC là: 

S = 12h.BC=12.23417.34=2(đvdt). 

Vậy diện tích tam giác ABC là 2 đvdt.

Bài 7.11 trang 41 Toán 10 Tập 2: Chứng minh rằng hai đường thẳng d: y = ax + b (a ≠ 0) và d': y = a'x + b' (a' ≠ 0) vuông góc với nhau khi và chỉ khi aa' = – 1. 

Lời giải:

Ta có: y = ax + b ⇔ ax – y + b = 0 hay d: ax – y + b = 0 nên vectơ pháp tuyến của đường thẳng d là n=a;  1

Lại có: y = a'x + b' ⇔ a'x – y + b' = 0 hay d': a'x – y + b' = 0 nên vectơ pháp tuyến của đường thẳng d' là n'=a';  1

Hai đường thẳng d và d' vuông góc với nhau khi nn'n.n'=0a.a'+1.1=0 

a.a'+1=0a.a'=1

Vậy d ⊥ d' ⇔ aa' = – 1. 

Bài 7.12 trang 41 Toán 10 Tập 2: Trong mặt phẳng tọa độ, một tín hiệu âm thanh phát đi từ một vị trí và được ba thiết bị ghi tín hiệu đặt tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận được cùng một thời điểm. Hãy xác định vị trí phát tín hiệu âm thanh. 

Lời giải:

Gọi H(a; b) là vị trí tín hiệu âm thanh phát đi. 

Vì ba thiết bị ghi tín hiệu đặt tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận tín hiệu từ H phát đi tại cùng một thời điểm nên HO = HA = HB. 

Ta có: HO=a;b, HA=1a;b, HC=1a;3b

Do đó: HO=a2+b2=a2+b2, HA=1a2+b2=a12+b2HC=1a2+3b2=a12+b32

Vì HO = HA nên a2+b2=a12+b2 a2+b2=a12+b2

⇔ a2 = a2 – 2a + 1 ⇔ 2a = 1 ⇔ a = 12

Vì HA = HB nên a12+b2=a12+b32

a12+b2=a12+b32

⇔ b2 = b2 – 6b + 9 ⇔ 6b = 9 ⇔ b = 32

Thay a = 12 và b = 32 vào các phương trình ta thấy đều thỏa mãn. 

Vậy vị trí phát tín hiệu âm thanh là tại điểm H có tọa độ 12;32

Lời giải bài tập Toán lớp 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Kết nối tri thức hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2