15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) - Kết nối tri thức


Haylamdo biên soạn và sưu tầm với 15 bài tập trắc nghiệm Hàm số bậc hai Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.

15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) - Kết nối tri thức

Câu 1. Trục đối xứng của parabol y = x2 – 4x + 1

A. x = 2

B. x = – 2

C. x = 4

D. x = – 4

Câu 2. Tọa độ đỉnh I của hàm số y = – 3x2 + 4x – 1

A. I 2 3 ; 1 3

B. I 2 3 ; 1 3

C.  I 4 3 ; 1

D. I 2 3 ; 4 3

Câu 3. Cho hàm số y = 2x2 – 4x – 1. Kết luận nào đúng trong các kết luận sau

A. Hàm số đồng biến trên khoảng (0; + ∞);

B. Hàm số đồng biến trên khoảng (– ∞; 1);

C. Hàm số nghịch biến trên khoảng (– ∞; 0);

D. Hàm số nghịch biến trên khoảng (– ∞; 2).

Câu 4. Cho parabol y = ax2 + bx – 3. Xác định hệ số a, b biết parabol có đỉnh

I(– 1; – 5)

A. a = 1; b = 2;

B. a = 1; b = – 2;

C. a = – 2; b = 4;

D. a = 2; b = 4.

Câu 5. Hàm số y = – x2 + 2x + 1 đồng biến trên khoảng

A. (– ∞; + ∞);

B. (– ∞; 1);

C. (1; + ∞);

D. (– ∞; 2).

Câu 6. Cho parabol có đồ thị như hình sau:

15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

Tọa độ đỉnh I của parabol

A. I(– 1; – 3);

B. I(1; 0);

C. I(0; – 3);

D. I(1; – 3).

Câu 7. Cho hàm số y = f(x) có đồ thị như hình sau:

15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

 

Hàm số đồng biến trên khoảng

A. ; 3 2

B. - ; - 25 4

C. - 3 2 : +

D.  25 4 ; +

Câu 8. Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:

15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

Kết luận nào sau đây đúng về hệ số a, b:

A. a > 0; b > 0;

B. a < 0; b > 0;

C. a > 0; b < 0;

D. a > 0; c <0.

Câu 9. Hàm số y = x2 + 2x – 1 có bảng biến thiên là

A. 15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

B. 15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

C.15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

D.15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

Câu 10. Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?

A. 15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

B. 15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

C. 15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

D. 15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

Câu 11. Parabol y = ax2 + bx + c đạt giá trị nhỏ nhất bằng 4 tại x = – 2 và đi qua

A(0; 6) có phương trình là

A. y = 1 2 x 2 + 2 x + 6

B. y = x2 + 2x + 6

C. y = 1 2 x2 + 6x + 6

D. y = x2 + x + 4

Câu 12. Cho hàm số y = f(x). Biết f(x + 2) = x2 – 3x + 2 thì f(x) bằng:

A. y = f(x) = x2 + 7x – 12;

B. y = f(x) = x2 – 7x – 12;

C. y = f(x) = x2 + 7x + 12;

D. y = f(x) = x2 – 7x + 12.

Câu 13. Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Hàm số đó là hàm số nào?

15 Bài tập Hàm số bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) | Kết nối tri thức

A. y = x2 – 4x – 1;

B. y = 2x2 – 4x – 1;

C. y = – 2x2 – 4x – 1;

D. y = 2x2 – 4x + 1.

Câu 14. Biết rằng P: y = ax2 + bx + 2 (a > 1) đi qua điểm M(–1; 6) và có tung độ đỉnh bằng - 1 4 . Tính tích P = a.b.

A. P = – 3

B. P = – 2

C. P = 192

D. P = 28

Câu 15. Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.

A. S = – 1;

B. S = – 4;

C. S = 4;

D. S =  2.

Câu 1:

Trục đối xứng của parabol y = x2 – 4x + 1

A. x = 2;

B. x = – 2;

C. x = 4;

D. x = – 4.

Xem lời giải »


Câu 2:

Tọa độ đỉnh I của hàm số y = – 3x2 + 4x – 1

A. \[{\rm{I}}\left( {--\frac{{\rm{2}}}{{\rm{3}}}{\rm{;}}\frac{{\rm{1}}}{{\rm{3}}}} \right)\];

B. \[{\rm{I}}\left( {\frac{{\rm{2}}}{{\rm{3}}}{\rm{;}}\frac{{\rm{1}}}{{\rm{3}}}} \right)\];

C. \[{\rm{I}}\left( {\frac{{\rm{4}}}{{\rm{3}}}{\rm{;}}--{\rm{1}}} \right)\];

D. \[{\rm{I}}\left( {\frac{2}{{\rm{3}}}{\rm{;}}\frac{4}{{\rm{3}}}} \right)\].

Xem lời giải »


Câu 3:

Cho hàm số y = 2x2 – 4x – 1. Kết luận nào đúng trong các kết luận sau

A. Hàm số đồng biến trên khoảng (0; + ∞);

B. Hàm số đồng biến trên khoảng (– ∞; 1);

C. Hàm số nghịch biến trên khoảng (– ∞; 0);

D. Hàm số nghịch biến trên khoảng (– ∞; 2).

Xem lời giải »


Câu 4:

Cho parabol y = ax2 + bx – 3. Xác định hệ số a, b biết parabol có đỉnh

I(– 1; – 5)

A. a = 1; b = 2;

B. a = 1; b = – 2;

C. a = – 2; b = 4;

D. a = 2; b = 4.

Xem lời giải »


Câu 5:

Hàm số y = – x2 + 2x + 1 đồng biến trên khoảng

A. (– ∞; + ∞);

B. (– ∞; 1);

C. (1; + ∞);

D. (– ∞; 2).

Xem lời giải »


Câu 6:

Cho parabol có đồ thị như hình sau:

Cho parabol có đồ thị như hình sau: Tọa độ đỉnh I của parabol (ảnh 1)

Tọa độ đỉnh I của parabol

A. I(– 1; – 3);

B. I(1; 0);

C. I(0; – 3);

D. I(1; – 3).

Xem lời giải »


Câu 7:

Cho hàm số y = f(x) có đồ thị như hình sau:

Cho hàm số y = f(x) có đồ thị như hình sau: Hàm số đồng biến trên khoảng (ảnh 1)

Hàm số đồng biến trên khoảng

A. \[\left( {--\infty {\rm{;}}--\frac{3}{2}} \right)\];

B. \[\left( {--\infty {\rm{;}}--\frac{{25}}{4}} \right)\];

C. \[\left( {--\frac{3}{2}; + \infty } \right)\];

D. \[\left( {--\frac{{{\rm{25}}}}{{\rm{4}}}; + \infty } \right)\].

Xem lời giải »


Câu 8:

Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:

Cho hàm số y = ax^2 + bx + c có đồ thị như hình sau: (ảnh 1)

Kết luận nào sau đây đúng về hệ số a, b:

A. a > 0; b > 0;

B. a < 0; b > 0;

C. a > 0; b < 0;

D. a > 0; c <0.

Xem lời giải »


Câu 9:

Hàm số y = x2 + 2x – 1 có bảng biến thiên là

A.

Hàm số y = x^2 + 2x – 1 có bảng biến thiên là (ảnh 2)

B.

Hàm số y = x^2 + 2x – 1 có bảng biến thiên là (ảnh 3)

C.

Hàm số y = x^2 + 2x – 1 có bảng biến thiên là (ảnh 4)

D.

Hàm số y = x^2 + 2x – 1 có bảng biến thiên là (ảnh 5)

Xem lời giải »


Câu 10:

Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?

A.

Đồ thị hàm số y = 4x^2 – 3x – 1 có dạng nào trong các dạng sau đây? (ảnh 1)

B.

Đồ thị hàm số y = 4x^2 – 3x – 1 có dạng nào trong các dạng sau đây? (ảnh 2)

C.

Đồ thị hàm số y = 4x^2 – 3x – 1 có dạng nào trong các dạng sau đây? (ảnh 3)

D.

Đồ thị hàm số y = 4x^2 – 3x – 1 có dạng nào trong các dạng sau đây? (ảnh 4)

Xem lời giải »


Câu 11:

Parabol y = ax2 + bx + c đạt giá trị nhỏ nhất bằng 4 tại x = 2 và đi qua

A(0; 6) có phương trình là

A. \[y = \frac{1}{2}{x^2} + 2x + 6\];

B. y = x2 + 2x + 6;

C. y = \(\frac{1}{2}\)x2 + 6x + 6;

D. y = x2 + x + 4.

Xem lời giải »


Câu 12:

Cho hàm số y = f(x). Biết f(x + 2) = x2 – 3x + 2 thì f(x) bằng:

A. y = f(x) = x2 + 7x – 12;

B. y = f(x) = x2 – 7x – 12;

C. y = f(x) = x2 + 7x + 12;

D. y = f(x) = x2 – 7x + 12.

Xem lời giải »


Câu 13:

Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Hàm số đó là hàm số nào?

Cho hàm số y = ax^2 + bx + c có đồ thị như hình dưới đây (ảnh 1)

A. y = x2 – 4x – 1;

B. y = 2x2 – 4x – 1;

C. y = – 2x2 – 4x – 1;

D. y = 2x2 – 4x + 1.

Xem lời giải »


Câu 14:

Biết rằng P: y = ax2 + bx + 2 (a > 1) đi qua điểm M(1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\). Tính tích P = a.b.

A. P = – 3;

B. P = – 2;

C. P = 192;

D. P = 28.

Xem lời giải »


Câu 15:

Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; 1). Tính tổng S = a + b + c.

A. S = 1;

B. S = 4;

C. S = 4;

D. S = 2.

Xem lời giải »


Xem thêm bài tập trắc nghiệm Toán lớp 10 Kết nối tri thức có đáp án hay khác:

<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2