15 Bài tập Phương trình quy về phương trình bậc hai (Trắc nghiệm Toán lớp 10 có đáp án) - Kết nối tri thức
Haylamdo biên soạn và sưu tầm với 15 bài tập trắc nghiệm Phương trình quy về phương trình bậc hai Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
15 Bài tập Phương trình quy về phương trình bậc hai (Trắc
nghiệm Toán lớp 10 có đáp án) - Kết nối tri thức
Câu 1. Phương trình: x 2 + x + 4 + x 2 + x + 1 = 2 x 2 + 2 x + 9 có tích các nghiệm là:
A. P = 1;
B. P = – 1;
C. P = 0;
D. P = 2.
Hiển thị đáp án
Đáp án đúng là C
Tập xác định D = ℝ, đặt t = x2 + x + 1 (t ≥ 0).
Phương trình đã cho trở thành t + 3 + t = 2 t + 7 ⇔ 2t + 3 + 2t t + 3 = 2t + 7
⇔ t t + 3 = 2
⇔ t(t + 3) = 4
⇔ t2 + 3t – 4 = 0
⇔ t = 1 t = − 4
Kết hợp điều kiện thấy t = 1 thỏa mãn.
Với t = 1 ta có x2 + x + 1 = 1 ⇔ x = 0 x = − 1 .
Thay lần lượt các giá trị x = 0 và x = -1 vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy tích các nghiệm của phương trình (-1).0 = 0.
Câu 2. Nghiệm của phương trình 5 x 2 − 6 x − 4 = 2(x - 1) là:
A. x = – 4;
B. x = 2;
C. x = 1;
D. x = − 4 x = 2 .
Hiển thị đáp án
Đáp án đúng là: B
Điều kiện của phương trình 5x2 – 6x – 4 ≥ 0 ⇔ x ≤ 3 − 29 5 x ≥ 3 + 29 5
5 x 2 − 6 x − 4 = 2(x - 1) ⇔ 2 x − 1 ≥ 0 5 x 2 − 6 x − 4 = 4 x − 1 2
⇔ x ≥ 1 x 2 + 2 x − 8 = 0 ⇔ x ≥ 1 x = 2 x = − 4 ⇔ x = 2.
Vậy nghiệm của phương trình là x = 2.
Câu 3. Nghiệm của phương trình 3 x + 13 = x + 3 là:
A. x = − 4 x = 1 ;
B. x = - 4;
C. x = 4 x = − 1 ;
D. x = 1.
Hiển thị đáp án
Đáp án đúng là: D
3 x + 13 = x + 3
⇒ 3x + 13 = x2 + 6x + 9
⇒ x2 + 3x – 4 = 0
⇒ x = 1 hoặc x = -4.
Thay hai giá trị của x vào phương trình đã cho ta thấy x = 1 thỏa mãn.
Vậy phương trình đã cho nghiệm là x = 1.
Câu 4. Số nghiệm của phương trình x 2 + 5 = x2 - 1 là:
A. 1;
B. 2;
C. 0;
D. 4.
Hiển thị đáp án
Đáp án đúng là: B
Điều kiện của phương trình x2 + 5 ≥ 0 với ∀ x ∈ ℝ
x 2 + 5 = x2 - 1 ⇔ x 2 − 1 ≥ 0 x 2 + 5 = x 2 − 1 2 ⇔ x ≥ 1 x ≤ − 1 x 4 − 3 x 2 − 4 = 0
⇔ x ≥ 1 x ≤ − 1 x 2 = − 1 V L x 2 = 4 ⇔ x ≥ 1 x ≤ − 1 x = 2 x = − 2 ⇔ x = − 2 x = 2 (thỏa mãn điều kiện).
Vậy phương trình có 2 nghiệm.
Câu 5. Số nghiệm của phương trình 3 − x + x 2 - 2 + x − x 2 = 1 là:
A. 0;
B. 1;
C. 2;
D. 3.
Hiển thị đáp án
Đáp án đúng là: C
Điều kiện: 3 − x + x 2 ≥ 0 2 + x − x 2 ≥ 0 ⇔ 1 ≤ x ≤ 2
Ta có 3 − x + x 2 - 2 + x − x 2 = 1
⇔ − 1 ≤ x ≤ 2 3 − x + x 2 = 1 + 2 + x − x 2 + 2 2 + x − x 2
⇔ − 1 ≤ x ≤ 2 2 + x − x 2 + 2 + x − x 2 − 2 = 0 ( 1 ) .
Đặt 2 + x − x 2 = t(t ≥ 0)
Từ (1) ta có phương trình t2 + t – 2 = 0 ⇔ t = 1 t = − 2
Kết hợp với điều kiện t = 1 thỏa mãn
Với t = 1 ta có 2 + x − x 2 = 1 => x2 - x - 1= 0 ⇔ x = 1 ± 5 2 ( thỏa mãn)
Vậy phương trình có 2 nghiệm.
Câu 6. Nghiệm của phương trình: x + 1 + 4 x + 13 = 3 x + 12 là:
A. x = 1;
B. x = – 1;
C. x = 4;
D. x = – 4.
Hiển thị đáp án
Đáp án đúng là: B
Điều kiện xác định x ≥ − 1 x ≥ − 13 4 x ≥ − 4 ⇔ x ≥ 1
Ta có: x + 1 + 4 x + 13 = 3 x + 12
⇒ 24 x 2 + 17 x + 13 = -2x -2
⇒ 4x2 + 17x + 13 = x2 + 2x + 1
⇒ 3x2 + 15x + 12 = 0
⇒ x = -1 hoặc x = -4
Thay lần lượt hai giá trị của x vào phương trình đã cho ta thấy chỉ có x = -1 là thỏa mãn.
Vậy đáp án đúng là B
Câu 7. Nghiệm của phương trình 8 − x 2 = x + 2 là
A. x = – 3;
B. x = – 2;
C. x = 2;
D. x = 2 x = − 3 .
Hiển thị đáp án
Đáp án đúng là: C
Xét phương trình 8 − x 2 = x + 2
⇒ 8 – x2 = x + 2
⇒ x2 + x – 6 = 0
⇒ x = 2 hoặc x = -3.
Thay lần lượt hai giá trị vào phương trình đã cho ta thấy x = 2 là thỏa mãn.
Vậy phương trình đã cho có nghiệm là x = 2.
Đáp án đúng là C.
Câu 8. Số nghiệm của phương trình x 2 − 4 x − 12 = x - 4 là:
A. 1;
B. 2;
C. 0;
D. 3.
Hiển thị đáp án
Đáp án đúng là: A
Điều kiện của phương trình: x2 – 4x – 12 ≥ 0 ⇔ x ≥ 6 x ≤ − 2
x 2 − 4 x − 12 = x - 4 ⇔ x ≥ 6 x 2 − 4 x − 12 = x 2 − 8 x + 16
⇔ x ≥ 6 4 x − 28 = 0 ⇔ x = 7
Vậy phương trình có 1 nghiệm
Câu 9. Nghiệm của phương trình 2 x 2 − 6 x − 4 = x - 2 là:
A. x = − 2 x = 4 ;
B. x = 2;
C. x = – 2;
D. x = 4.
Hiển thị đáp án
Đáp án đúng là: D
Điều kiện của phương trình: 2x2 – 6x – 4 ≥ 0 ⇔ x ≥ 3 + 17 2 x ≤ 3 − 17 2
2 x 2 − 6 x − 4 = x - 2 ⇔ x ≥ 2 2 x 2 − 6 x − 4 = x − 2 2 ⇔ x ≥ 2 x 2 − 2 x − 8 = 0 ⇔ x = 4
Vậy phương trình đã cho có nghiệm là x = 4.
Câu 10. Nghiệm của phương trình 2 x + 7 = x - 4 thuộc khoảng nào dưới đây:
A. (0; 2);
B. (9; 10);
C. [7; 9];
D. (-1; 1].
Hiển thị đáp án
Đáp án đúng là: C
Điều kiện của phương trình: 2x + 7 ≥ 0 ⇔ x ≥ -7 2
2 x + 7 = x - 4 ⇔ x ≥ 4 2 x + 7 = x − 4 2 ⇔ x ≥ 4 x 2 − 10 x + 9 = 0 ⇔ x ≥ 4 x = 1 x = 9 ⇔ x = 9.
Vậy phương trình đã cho có nghiệm là x = 9 ∈ [7; 9].
Đáp án đúng là C.
Câu 11. Gọi k là số nghiệm âm của phương trình: − x 2 + 6 x − 5 = 8 - 2x. Khi đó k bằng:
A. k = 0;
B. k = 1;
C. k = 2;
D. k = 3.
Hiển thị đáp án
Đáp án đúng là: A
Điều kiện của phương trình : – x2 + 6x – 5 ≥ 0 ⇔ 1 ≤ x ≤ 5
Ta có: − x 2 + 6 x − 5 = 8 - 2x
⇔ 1 ≤ x ≤ 4 − x 2 + 6 x - 5 = ( 8 - 2 x ) 2
⇔ 1 ≤ x ≤ 4 − 5 x 2 + 38 x − 69 = 0
⇔ 1 ≤ x ≤ 4 x = 3 x = 23 5 ⇔ x = 3.
Do đó phương trình không có nghiệm âm. Suy ra k = 0.
Câu 12. Tổng các nghiệm của phương trình (x - 2)2 x + 7 = x2 - 4 bằng:
A. 0;
B. 1;
C. 2;
D. 3.
Hiển thị đáp án
Đáp án đúng là: D
Điều kiện của phương trình: 2x + 7 ≥ 0 ⇔ x ≥ -7 2
Xét với x = 2 là nghiệm của phương trình
Với x ≠ 2 ta có (x - 2)2 x + 7 = x2 - 4 ⇔ 2 x + 7 = x + 2
⇔ x ≥ − 2 2 x + 7 = ( x + 2 ) 2 ⇔ x ≥ − 2 x 2 + 2 x − 3 = 0 ⇔ x ≥ − 2 x = 1 x = − 3 ⇔ x = 1
Suy ra phương trình có 2 nghiệm là x = 1; x = 2.
Vậy tổng các nghiệm S = 3.
Câu 13. Số nghiệm của phương trình: 2 − x + 4 2 − x + 3 = 2 là:
A. 0;
B. 1;
C. 2;
D. 3.
Hiển thị đáp án
Đáp án đúng là: B
Điều kiện của phương trình: 2 − x ≥ 0 2 − x + 3 ≠ 0 ⇔ x ≤ 2
Đặt 2 − x = t(t ≥ 0) ta có 2 − x + 4 2 − x + 3 = 2 ⇔ t + 4 t + 3 = 2
⇔ t2 + t - 2 = 0 ⇔ t = 1 t = − 2
Kết hợp điều kiện t = 1 thỏa mãn
Với t = 1 ta có 2 − x = 1 ⇔ x = 1
Vậy phương trình có một nghiệm x = 1.
Câu 14. Số nghiệm của phương trình 4x 2 − 6 x + 6 = x2 - 6x + 9 là:
A. 1;
B. 2;
C. 3;
D. 4.
Hiển thị đáp án
Đáp án đúng là: D
Điều kiện của phương trình x2 – 6x + 6 ≥ 0 ⇔ x ≥ 3 + 3 x ≤ 3 − 3
Đặt x 2 − 6 x + 6 = t(t > 0)
4x 2 − 6 x + 6 = x2 - 6x + 9 ⇔ 4t = t2 + 3
⇔ t2 - 4t + 3 = 0 ⇔ t = 1 t = 3
Với t = 1 ta có phương trình x 2 − 6 x + 6 = 1 ⇔ x2 - 6x + 5 = 0 ⇔ x = 1 x = 5
Với t = 3 ta có phương trình x 2 − 6 x + 6 = 3 ⇔ x2 - 6x - 3 = 0 ⇔ x = 3 + 2 3 x = 3 − 2 3
Kết hợp với điều kiện cả bốn nghiệm đều thỏa mãn.
Vậy phương trình có 4 nghiệm.
Câu 15. Tích các nghiệm của phương trình (x + 4)(x + 1) - 3x 2 + 5 x + 2 = 6 là:
A. – 5;
B. – 9;
C. – 14;
D. – 4;
Hiển thị đáp án
Đáp án đúng là: C
Điều kiện của phương trình: x2 + 5x + 2 ≥ 0 ⇔ x ≥ − 5 + 17 2 x ≤ − 5 − 17 2
(x + 4)(x + 1) - 3x 2 + 5 x + 2 = 6 ⇔ x2 + 5x + 4 - 3x 2 + 5 x + 2 = 6
Đặt x 2 + 5 x + 2 = t(t ≥ 0)
x2 + 5x + 4 - 3x 2 + 5 x + 2 = 6 ⇔ t2 - 3t - 4 = 0 ⇔ t = − 1 t = 4
Kết hợp với điều kiện t = 4 thỏa mãn
Với t = 4 ta có x 2 + 5 x + 2 = 4 ⇔ x2 + 5x - 14 = 0 ⇔ x = 2 x = − 7
Vậy tích các nghiệm của phương trình là – 14.
Câu 1:
Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:
Xem lời giải »
Câu 2:
Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:
D. \[\left[ \begin{array}{l}x = - 4\\x = 2\end{array} \right.\] .
Xem lời giải »
Câu 3:
Nghiệm của phương trình \[\sqrt {3x + 13} = x + 3\] là:
A. \[\left[ \begin{array}{l}x = - 4\\x = 1\end{array} \right.\] ;
C. \[\left[ \begin{array}{l}x = 4\\x = - 1\end{array} \right.\] ;
Xem lời giải »
Câu 4:
Số nghiệm của phương trình \[\sqrt {{x^2} + 5} = {x^2} - 1\] là:
Xem lời giải »
Câu 5:
Số nghiệm của phương trình \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:
Xem lời giải »
Câu 6:
Nghiệm của phương trình: \[\sqrt {x + 1} + \sqrt {4x + 13} = \sqrt {3x + 12} \] là:
Xem lời giải »
Câu 7:
Nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \] là
D. \(\left[ \begin{array}{l}x = 2\\x = - 3\end{array} \right.\) .
Xem lời giải »
Câu 8:
Số nghiệm của phương trình \[\sqrt {{x^2} - 4x - 12} = x - 4\] là:
Xem lời giải »
Câu 9:
Nghiệm của phương trình \[\sqrt {2{x^2} - 6x - 4} = x - 2\] là:
A. \[\left[ \begin{array}{l}x = - 2\\x = 4\end{array} \right.\] ;
Xem lời giải »
Câu 10:
Nghiệm của phương trình \[\sqrt {2x + 7} = x - 4\] thuộc khoảng nào dưới đây:
Xem lời giải »
Câu 11:
Gọi k là số nghiệm âm của phương trình :\(\sqrt { - {x^2} + 6x - 5} = 8 - 2x\) . Khi đó k bằng:
Xem lời giải »
Câu 12:
Tổng các nghiệm của phương trình \[\left( {x - 2} \right)\sqrt {2x + 7} = {x^2} - 4\] bằng:
Xem lời giải »
Câu 13:
Số nghiệm của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {2 - x} + 3}} = 2\) là:
Xem lời giải »
Câu 14:
Số nghiệm của phương trình \[4\sqrt {{x^2} - 6x + 6} = {x^2} - 6x + 9\] là:
Xem lời giải »
Câu 15:
Tích các nghiệm của phương trình \[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6\] là:
Xem lời giải »