Việc quy đổi nhiệt độ giữa đơn vị độ C (Anders Celsius, 1701 – 1744) và đơn vị độ F (Daniel Fahrenheit, 1686 – 1736) được xác định bởi hai mốc sau: Nước đóng băng ở 0 °C, 32 °F; Nước sôi ở
Câu hỏi:
Việc quy đổi nhiệt độ giữa đơn vị độ C (Anders Celsius, 1701 – 1744) và đơn vị độ F (Daniel Fahrenheit, 1686 – 1736) được xác định bởi hai mốc sau:
Nước đóng băng ở 0 °C, 32 °F;
Nước sôi ở 100 °C, 212 °F.
Trong quy đổi đó, nếu a °C tương ứng với b °F thì trên mặt phẳng tọa độ Oxy, điểm M(a; b) thuộc đường thẳng đi qua A(0; 32) và B(100; 212).
Hỏi 0 °F, 100 °F tương ứng với bao nhiêu độ C?
Trả lời:
Hướng dẫn giải
Ta lập phương trình đường thẳng đi qua hai điểm A(0; 32) và B(100; 212).
Ta có: \(\overrightarrow {AB} = \left( {100 - 0;212 - 32} \right) = \left( {100;180} \right)\).
Chọn \(\overrightarrow u = \frac{1}{{20}}\overrightarrow {AB} = \left( {5;\,9} \right)\) là một vectơ chỉ phương của AB thì đường thẳng AB có một vectơ pháp tuyến là \(\overrightarrow n \left( {9; - 5} \right)\).
Do đó phương trình tổng quát của đường thẳng AB là
9(x – 0) – 5(y – 32) = 0 hay 9x – 5y + 160 = 0.
Để tìm 0 °F, 100 °F tương ứng với bao nhiêu độ C nghĩa là ta tìm hoành độ của các điểm thuộc đường thẳng AB có tung độ lần lượt là 0 và 100.
Tại 0 °F, nghĩa là y = 0 thì 9x – 5 . 0 + 160 = 0 ⇔ 9x = – 160 ⇔ x = \( - \frac{{160}}{9}\).
Tại 100 °F, nghĩa là y = 100 thì 9x – 5 . 100 + 160 = 0 ⇔ 9x = 340 ⇔ x = \(\frac{{340}}{9}\).
Vậy 0 °F tương ứng với \( - \frac{{160}}{9}\)°C và 100 °F tương ứng với \(\frac{{340}}{9}\) °C.
Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:
Câu 1:
A. Các câu hỏi trong bài
Cho vectơ và điểm A. Tìm tập hợp những điểm M sao cho \(\overrightarrow {AM} \) vuông góc với \(\overrightarrow n \).
Xem lời giải »
Câu 2:
Trong mặt phẳng tọa độ, cho đường thẳng ∆ đi qua điểm A(x0; y0) và có vectơ pháp tuyến \(\overrightarrow n \left( {a;b} \right)\). Chứng minh rằng điểm M(x; y) thuộc ∆ khi và chỉ khi
a(x – x0) + b(y – y0) = 0. (1) Xem lời giải »
Câu 3:
Trong mặt phẳng tọa độ, cho tam giác có ba đỉnh A(– 1; 5), B(2; 3), C(6; 1). Lập phương trình tổng quát của đường cao kẻ từ A của tam giác ABC.
Xem lời giải »
Câu 4:
Hãy chỉ ra một vectơ pháp tuyến của đường thẳng ∆: y = 3x + 4.
Xem lời giải »
Câu 5:
B. Bài tập
Trong mặt phẳng tọa độ, cho \(\overrightarrow n = \left( {2;\,1} \right),\,\overrightarrow v = \left( {3;\,2} \right),\,A\left( {1;\,3} \right),\,B\left( { - 2;\,1} \right)\).
a) Lập phương trình tổng quát của đường thẳng ∆1 đi qua A và có vectơ pháp tuyến \(\overrightarrow n \).
b) Lập phương trình tham số của đường thẳng ∆2 đi qua B và có vectơ chỉ phương \(\overrightarrow v \).
c) Lập phương trình tham số của đường thẳng AB.
Xem lời giải »
Câu 6:
Lập phương trình đường thẳng tổng quát của các trục tọa độ.
Xem lời giải »
Câu 7:
Cho hai đường thẳng ∆1: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + 5t\end{array} \right.\) và ∆2: 2x + 3y – 5 = 0.
a) Lập phương trình tổng quát của ∆1.
b) lập phương trình tham số của ∆2.
Xem lời giải »
Câu 8:
Trong mặt phẳng tọa độ, cho tam giác ABC có A(1; 2), B(3; 0) và C(– 2; – 1).
a) Lập phương trình đường cao kẻ từ A.
b) Lập phương trình đường trung tuyến kẻ từ B.
Xem lời giải »