Luyện tập 2 trang 91 Toán 11 Tập 2 Cánh diều
Trong không gian cho hai mặt phẳng (α), (β) cắt nhau theo giao tuyến d. Hai mặt phẳng (α), (β) tạo nên bao nhiêu góc nhị diện có cạnh của góc nhị diện là đường thẳng d?
Giải Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Cánh diều
Luyện tập 2 trang 91 Toán 11 Tập 2: Trong không gian cho hai mặt phẳng (α), (β) cắt nhau theo giao tuyến d. Hai mặt phẳng (α), (β) tạo nên bao nhiêu góc nhị diện có cạnh của góc nhị diện là đường thẳng d?
Lời giải:
Gọi M, N là hai điểm bất kì lần lượt thuộc hai mặt phẳng (α), (β).
Góc nhị diện được tạo bởi hai mặt phẳng (α), (β) có cạnh của góc nhị diện là đường thẳng d là [M, d, N].
Vì có vô số điểm M và N khác nhau thuộc hai mặt phẳng (α), (β) nên hai mặt phẳng (α), (β) tạo nên vô số góc nhị diện có cạnh của góc nhị diện là đường thẳng d.
Lời giải bài tập Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện hay, chi tiết khác:
Luyện tập 3 trang 93 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ⊥ (ABCD). Tính số đo của mỗi góc nhị diện sau:....
Bài 1 trang 94 Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a. ....
Bài 2 trang 94 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hai đường thẳng AC và BD cắt nhau tại O, SO ⊥ (ABCD), tam giác SAC là tam giác đều.....
Bài 3 trang 94 Toán 11 Tập 2: Dốc là đoạn đường thẳng nối hai khu vực hay hai vùng có độ cao khác nhau. Độ dốc được xác định bằng góc giữa dốc và mặt phẳng nằm ngang...
Bài 4 trang 94 Toán 11 Tập 2: Trong Hình 42, máy tính xách tay đang mở gợi nên hình ảnh của một góc nhị diện. Ta gọi số đo góc nhị diện đó là độ mở của màn hình máy tính....
Bài 5 trang 94 Toán 11 Tập 2: Trong Hình 43, xét các góc nhị diện có góc phẳng nhị diện tương ứng là trong cùng mặt phẳng....
Bài 6 trang 94 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi α là số đo của góc nhị diện [A, BC, S]. Chứng minh rằng tỉ số diện tích của hai tam giác ABC và SBC bằng cosα.....