Luyện tập 2 trang 91 Toán 11 Tập 2 Cánh diều


Trong không gian cho hai mặt phẳng (α), (β) cắt nhau theo giao tuyến d. Hai mặt phẳng (α), (β) tạo nên bao nhiêu góc nhị diện có cạnh của góc nhị diện là đường thẳng d?

Giải Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Cánh diều

Luyện tập 2 trang 91 Toán 11 Tập 2: Trong không gian cho hai mặt phẳng (α), (β) cắt nhau theo giao tuyến d. Hai mặt phẳng (α), (β) tạo nên bao nhiêu góc nhị diện có cạnh của góc nhị diện là đường thẳng d?

Lời giải:

Gọi M, N là hai điểm bất kì lần lượt thuộc hai mặt phẳng (α), (β).

Góc nhị diện được tạo bởi hai mặt phẳng (α), (β) có cạnh của góc nhị diện là đường thẳng d là [M, d, N].

Vì có vô số điểm M và N khác nhau thuộc hai mặt phẳng (α), (β) nên hai mặt phẳng (α), (β) tạo nên vô số góc nhị diện có cạnh của góc nhị diện là đường thẳng d.

Lời giải bài tập Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: